सरल गणित (बीजगणित)

 कक्षा - आठवीं

 कक्षा - आठवीं}

शिक्षक शिक्षा निदेशालय एवं
राज्य शैक्षिक अनुसंधान और प्रशिक्षण परिषद, ओड़िशा, भुवनेश्वर

ओड़िशा विद्यालय शिक्षा कार्यक्रम प्राधिकरण भुवनेश्वर

सरल गणित (बीजगणित)

कक्षा - आठवीं
लेखक मंडली :
डॉ. प्रसत्र कुमार शतपथी (समीक्षक)
डॉ. रजनी वल्लभ दाश
श्री नगेन्द्र कुमार मिश्र
श्रीमती कुमुदिनी जी
श्री कैलास चन्द्र स्वाइँ
समीक्षक :
श्री मदन मोहन महान्ति
श्री नारायण साहु
श्री मानस मिश्र
श्री कार्त्तिक चंद्र बेहेरा

अनुवादक मंडली :
प्रो. राधाकान्त मिश्र
प्रो. स्मरप्रिया मिश्र
डॉ. सनातन बेहेरा
डॉ. स्नेहलता दास
डॉ. लक्ष्मीधर दाश (अनुवादक)
डॉ. अजित प्रसाद महापात्र (पुनरीक्षक)
डॉ. अमूल्य रत्न महान्ति

संयोजना :

डॉ. सबिता साहु

संयोजना :
डॉ. नलिनीकान्त मिश्र
डॉ. तिलोत्तमा सेनापति
डॉ. सबिता साहु
प्रकाशक :
विद्यालय और गणशिक्षा विभाग,
ओड़िशा, सरकार
मुद्रण वर्ष : २०२२
प्रस्तुति : शिक्षक शिक्षा निदेशालय एवं राज्य शैक्षिक अनुसंधान और
प्रशिक्षण परिषद, ओड़िशा, भुवनेश्वर
और
ओड़िशा राज्य पाठ्यपुस्तक प्रणयन और प्रकाशन संस्था, भुवनेश्वर
मुद्रण : पाठ्य पुस्तक उत्पादन और विक्रय, भुवनेश्वर

इस पुस्तक के बारे में कुछ...

आज का युग विज्ञान और प्रौद्योगिकी का युग है । तात्तिव और प्रयोगात्मक-इन दोनों दिशाओं में विज्ञान की अग्रगति के लिए गणित-शास्त्र की एक सुदृढ़ भूमिका है। गणित शास्त्र में बीजगणित एक महत्वपूर्ण अंग है। विद्यालय के स्तर से बीजगणित का पाठ्यक्रम एक उपयुक्त पृष्ठभूमि पर प्रतिष्ठित होना वांछनीय है ।

विश्व में दूसरे विकासशील देशों की तरह भारत भी इन क्षेत्र में उल्लेखनीय भूमिका ले रहा है । माध्यमिक शिक्षा स्तर के लिए राष्ट्रीय स्तर पर प्रस्तुत National Curriculum Frame Work2005 में गणित की शिक्षा को अधिक महत्व प्रदान किया गया है । उसी के अनुसार राष्ट्रीय शैक्षिक अनुसंधान और प्रशिक्षण परिषद् ने पाठ्यक्रम और पाठ्य-पुस्तकों का निर्माण किया है । राष्ट्रीय शिक्षास्रोत को ध्यान में रखकर ओड़िशा माध्यमिक शिक्षा परिषद, शिक्षक शिक्षा निदेशालय एवं राज्य शैक्षिक अनुसंधान और प्रशिक्षण परिषद द्वारा प्रस्तुत राज्य पाठ्यक्रम के आधार पर आठवों कक्षा के लिए पाठ्यक्रम प्रस्तुत किया गया और उसी के अनुसार नूतन रूप से सरल गणित (बीजगणित) पाठ्यपुस्तक का प्रकाशन किया गया है।

अनुभवी लेखकों द्वारा पाठ्यपुस्तक की रचना की गई और पुस्तक की पांडुलिपि को राज्य स्तर की एक कार्यशाला में कार्यरत गणित शिक्षक शिक्षिकाओं द्वारा चर्चा की गई। परवर्ती समय में पाठ्यक्रम कमेटी में पांडुलिपि को पढ़ा गया और उस पर चर्चा हुई । चर्चा के उपरांत जो सुझाव मिले उसी के अनुसार उसे सुधारा गया ।

शिक्षक शिक्षा निदेशालय एवं राज्य शैक्षिक अनुसंधान तथा प्रशिक्षण परिषद के इस पुस्तक के आवश्यक संशोधन के लिए गणित विशारदों और कार्यरत गणित शिक्षक-शिक्षिकाओं द्वारा सन् २०१४ ई में प्रयास होने के बावजूद यह संभव नहीं हुआ था। सन् २०१६ ई. में पुस्तक का संशोधन कार्य किया गया है । फिर भी अगर तथ्यों में तुरुटयाँ रह गई हों, तब कृपया संबंधित प्राधिकारी को इसकी सूचना प्रदान करें ।

विषय-सूची

अध्याय	विषय	पृष्ठ
1.	सेट	1
2.	परिमेय संख्या	9
3.	बीजीय व्यंजक और सर्वसमिकाएँ	36
4.	गुणन खण्ड	60
5.	सूचक तत्व	68
6.	वर्ग-वर्गमूल तथा घन-घनमूल	76
7.	समीकरण और इसका हल	101
8.	व्यापारिक गणित	112
9.	विचरण	145
10.	आँकड़ों का प्रंबधन और चित्रालेख	156
	उत्तरमाला	183

1.1. भूमिका (Introductin) :

प्रख्यात जर्मन गणितज्ञ जर्ज कैंटर (George Cantor- 1845-1918) सेट तत्व (Set Theory) के प्रवर्तक हैं । गणित को सरल और सुंदय बनाने में सेट तत्व की मुख्य भूमिका है । इसके माध्यम से जटिल गणित के तत्वों को सरल गणित से विश्लेषण किया जा सकता है । सेट तत्व ने गणित-शास्त्र की नींव को मजबूत करने के साथ-साथ गणित के विभिन्न विभागों के संबंध को भी मजबूत किया है ।

1.2. सेट और इसके उपादान (Set and its elements):

हम प्रायतः प्रसंगवश चाभियों का गुच्छा, छात्र-दल, ढ़रों का झुंड, तारापुंज, क्रिकेट-टीम आदि का प्रयोग करते हैं । यहाँ गुच्छा, दल, झुंड, पुंज और टीम आदि एक-एक संग्रह (Collection) या समूह (aggregate) है । उसी प्रकार बर्तनों का सेट का सोफा सेट कहने से हम क्रमशः वर्तनों समूह और सोफों का समूह ही समझते हैं । वस्तुओं को लेकर एक सेट की परिकल्पना की जाती है । उदाहरण स्वरूप :
(i) ओड़ाशा के जिले समूह
(ii) अंग्रेजी भाषा की वर्णमाला
(iii) हफ्ते के दिन
(v) सेव, अगूंर, संतरे और नारीयल आदि फल
(vii) प्राकृत संख्या समूह
(iv) शेर, भालू और बाघों का दल
(vi) आलू, बैंगन, कुम्हड़ा, गोभी आदि सब्जियाँ
(viii) भाज्य संख्या $2,4,6,8$ का समूह

इस समूह को लेकर एक-एक सेट की परिकल्पना की जा सकेगी ।
जिन वस्तुओं को लेकर सेट बनता है, वे सेट के एक-एक उपादान (element) कहालाते हैं । ओड़िशा के जिलों के समूह में पुरी, कटक, बालेश्शर, संबलपुर, कंधमाल आदि एक-एक उपादान हैं । उसी प्रकार प्राकृत संख्या-सेट में 1 , $2,3, \ldots \ldots .$. एक-एक उपादान हैं।

तुम्हारे लिए क्रिया-कलाप :

(i) अंग्रेजी भाषा की वर्णमाला के उपादानों को लिखो
(ii) एक अंकीय अभाज्य प्राकृत संख्या-सेट के उपादानों को लिखो ।

सेट बनाते समय हमें ध्यान देना पड़ेगा कि कोई दी गई वस्तु इम सेट का उपादान है या नहीं, उसे निश्चित रूप से तय करना जैसे संभव हो ।

उदाहरण के तोर पर सुंदर फूलों को लेकर एक सेट बनाना संभव नहीं है । क्योंकि सौंदर्य का ऐसा कोई मापदंड नहीं होता, जिससे हम निश्चित रूप से कह सकेंगें कि कौन-सा फुल सुंदर है और कौन सा फूल सुंदर नहीं है । उसी प्रकार वृहत्त प्राकृत संख्याओं को लेकर एक सेट बनाना भी संभव नहीं है । क्योंकि कौन-कौन सी संख्याएँ वृहत्त होंगी, उसे जानने का कोई निश्चित उपाय नहीं है । अतएव निश्चित रूप से तय न हो सकते वाले उपादानों को लेकर सेट बनाना संभव नहीं है ।
द्रष्टव्य : याद रखो कि सेट या इसके उपादानों की कोई परिभाषा नहीं है । ये दोनों परिभाषा विहीन हैं ।

तुम्हारे लिए क्रिया-कलाप :

(i) पाँच विभिन्न सेटों के उदाहरण देकर उनके उपादानों के नाम लिया ।
(ii) दो उदाहरण दो, जिन्हें लेकर सेट बनाना संभव नहीं है ।

1.3 ससीम और असीम सेट (Finite and infinite sets) :

जब किसी सेट के उपादानों को एक-एक करके गिनने से गिनने की प्रक्रिया की समाप्ति होती है, तो वह सेट ससीम सेट कहलाता है, यह न होने से वह असीम सेट कहलाएगा ।

उदाहरण-स्वरूप अंग्रेजी भाषा की वर्णमाला का सेट, एक अंकीय प्राकृत संख्याओं का सेट-प्रत्येक एक-एक ससीम सेट हैं । लेकिन सभी प्राकृत संख्याओं का सेट एक असीम सेट होगा ।

तुम्हारे लिए क्रिया-कलाप :

दो ससीम सेटों और दो असीम सेटों के उदाहरण दो ।

1.4 सेट का लेखन (Presentation of Sets) :

सामान्यतः सेटों को अंग्रेजी वर्णमाला के बड़े अक्षरों $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D} . \ldots .$. आदि से नामकरण किया जाता है। सेट के उपादानों को छोटे अक्षर $a, b, c, d, \ldots \ldots$. से सूचित किया जाता है । यदि सेट ' A ' का एक उपादान ' a ' होगा, तब हम लिखेंगे : $a \in A$ और इसे ' a belongs to A ' या ' a is an element of A ' पढ़ेंगे $। b, A$ का उपादान न हो तो $b \notin A$ लिखा जाता है । इसे b, A का उपादान नहीं है (b does not belong to A) या (b is not an element of A)- ऐसा पढ़ा जाता है । सेट लिखने के लिए दो प्रकार की पद्धतियाँ स्वीकृत हैं। जैसे :
(i) तालिका पद्धति या सारणी पद्धति (Tabular or Roster method)
(ii) सूत्र पद्धति या सेट बनाने वाली पद्धति (Formula or Set builder method)
(a) तालिका पद्धति :

दूसरे कोष्ठके के एक युग्म \{\} के बीच उन उपादानों को एक के बाद एक रखा जाएगा, जिन्हें लेकर सेट बना हो । प्रत्येक उपादान के बाद अल्प विराम (,) दिया जाएगा । उदाहरण स्वरूप यदि A सेट, हफ्ते के दिवसों को लेकर बना हो, तब तालिका-पद्धति से इसे हम लिखेंगा : $\mathrm{A}=\{$ सोमवार, मंगलयवार, बुधवार, वृहस्पति वार, शुक्रवार, शनिवार, रविवार\} । यदि ' B ' सेट एक अंकीय प्राकृत संख्याओं को लेकर बना हो, तो तालिका पद्धति से ऐसे लिखेंगे :-
$\mathrm{B}=\{1,4,9\}$
ध्यान दो कि A और B दोनों सेट ससीम सेट हैं ।

लेकिन यदि हम एक असीम सेट को तालिका-पद्धति से लिखेंगे, तब पहले इसके उपादानों के अनुक्रम (sequence) को ध्यान में रखकर कम-से-कम तीन उपादानों को लिखकर शेष उपादानों के लिए कई बिंदु डाल देंगे । उदाहरण स्वरूप : प्राकृत संख्याओं का सेट $\mathrm{N}=\{1,2,3, \ldots\}$ लिखना होगा ।

पूर्णसंख्याओं का सेट $\mathrm{Z}=\{0, \pm 1, \pm 2, \ldots \ldots . .$.

$$
\text { अथवा } \quad \mathrm{Z}=\{\ldots \ldots \ldots-2,-1,0,1,2, \ldots \ldots \ldots . .\}
$$

याद रखो : (i) किसी सेट को तालिका पद्धति से लिखते समय उपादानों के किसी भी क्रम से लिखने पर भी सेट में कोई बदलाव नहीं आता । जैसे :-

$$
\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}=\{\mathrm{b}, \mathrm{a}, \mathrm{c}\}=(\mathrm{a}, \mathrm{c}, \mathrm{~b}\}
$$

(ii) सेट के उपादानों को लिखते समय यदि कोई उपादान एकाधिक बार लिखा जाता है, तब उन उपादानों को सेट में एक ही बार लिखा जाएगा । जैसे :-

$$
\{1,2,3,3,2\}=\{1,2,3\} \text { होगा । }
$$

(b) सूत्र पद्धति : कुछ सेट हैं, जिन्हें तालिका पद्धति से लिखना संभव नहीं है या बहुत कठिन है । उदाहरण- स्वरूप, सभी भारतीयों के सेट को तालिका पद्धति से लिखना संभव नहीं होगा । ऐसे अनेक उदाहरण मिल सकेंगे । पर इन्हें सूत्र पद्धति से लिखना बड़ा आसान है । इस पद्धति में यदि सभी भारतीयों का सेट S के रूप में सूचित होता है, तब सूत्र पद्धति में लिखेंगे-

$$
\mathrm{S}=\{\mathrm{x} \mid \mathrm{x}, \text { एक भारतीय है }\}
$$

अथवा $S=\{x: x$, एक भारतीय $\}$
यहाँ '। ' या ' $:$ ' को ‘जैसे कि (such that) के रूप में पढ़ा जाता है । कोष्ठक के भीतर की उक्ति को सभी x का सेट, जैसे कि x एक भारतीय है, के रूप में पढ़ा जाता है ।
याद रखो : ‘जैसे कि' के बाद वाली उक्ति ' x ' का एक धर्म है । यहाँ s के उपादान है- वे सभी व्यक्ति, जो भारतीय हैं ।
इस पद्धति से सभी प्राकृत संख्याओं और सभी पूर्ण संख्याओं के सेट N और Z को सूत्र पद्धति से परिप्रकाश कर सकेंगे

$$
\begin{aligned}
& \mathrm{N}=\{\mathrm{x} \mid \mathrm{x} \text { एक प्राकृत संख्या }\} \\
& \mathrm{Z}=\{\mathrm{x} \mid \mathrm{x} \text { एक पूर्ण संख्या }\}
\end{aligned}
$$

तालिका पद्धति में सेट $\mathrm{P}=\{2,4,6,8, \ldots \ldots .$.$\} हो तो सूत्र पद्धति से सेट \mathrm{P}=\{\mathrm{x} \mid \mathrm{x}=2 \mathrm{n}, \mathrm{n} \in \mathrm{N}\}$ लिखा जाएगा । क्योंकि सेट P का प्रत्येक उपादान धनात्मक भाज्य संख्या है ।

उसी प्रकार यदि एक सेट $\mathrm{B}=\{\mathrm{x} \mid \mathrm{x}=2 \mathrm{n}, \mathrm{n} \in \mathrm{N}, \mathrm{n} \leq 5\}$ को सूत्र पद्धति से लिखा गया हो, तब उस सेट को तालिका पद्धति से $\mathrm{B}=\{2,4,6,8,10\}$ के रूप में लिखा जाएगा ।

तुम्हारे लिए क्रिया कलाप :

(i) तालिका पद्धति से क्या लिख सकेंगे
(a) N सेट,
(b) Z सेट
(ii) N, Z और Q सेट ससीम हैं या असीम ?
(iii) उन सेटों में से ऐसा एक सेट चुनो, जो दोनों पद्धतियों से लिखा जा सकेगा ।

उदाहरण 1 : तालिका पद्धति से नीचे लिखे गए सेटों को सूत्र पद्धति से लिखो ।
(i) $\mathrm{S}=\{-1,1\}$
(ii) $\mathrm{P}=\{3,6,9,12,15\}$
(iii) $\mathrm{T}=\{-1,-2,-3$ \qquad

हल : (i) $\mathrm{S}=\left\{\mathrm{x} \mid \mathrm{X}^{2}=1\right\}$
(ii) $\mathrm{P}=\{\mathrm{x} \mid \mathrm{x}=3 \mathrm{n}, \mathrm{n} \in \mathrm{N}, \mathrm{n} \leq 5\}$
(iii) $\mathrm{T}=\{-\mathrm{x} \mid \mathrm{x} \in \mathrm{N}\}$

उदाहरण 2 : सूत्र पद्धति से दिए गए निम्नलिखित सेटों को तालिका पद्धति से लिखो ।
(i) $\mathrm{A}=\{\mathrm{x} \mid \mathrm{x} \in \mathrm{N}, 5 \leq \mathrm{x} \leq 10\}$
(ii) $\mathrm{B}=\{\mathrm{x} \mid \mathrm{x}=2 \mathrm{n}, \mathrm{n} \in \mathrm{N}, \mathrm{x} \leq 5\}$
(iii) $\mathrm{C}=\left\{\mathrm{x} \mid \mathrm{x}=3^{\mathrm{n}}, \mathrm{n} \in \mathrm{N}\right\}$

हल : (i) यहाँ A के उपादान 5 और 10 तथा उनके मध्यवर्ती सभी प्राकृत संख्याएँ हैं ।
अतएव $\mathrm{A}=\{5,6,7,8,9,10\}$
(ii) यहाँ B सेट का प्रत्येक उपादान भाज्य प्राकृत संख्या हैं, जो 5 से छोटा है ।

अतएव होगा $\mathrm{B}=\{2,4\}$
(iii) यहाँ प्रत्येक उपादान $3^{\mathrm{n}}, \mathrm{n} \in \mathrm{N}$ है ।

अतएव उपादान होंगे - $3,9,27,81 \ldots \ldots .$. आदि ।
$\therefore C=\{3,9,27,81, \ldots$.$\} यह एक असीम सेट है ।$
उदाहरण 3 : निम्न सेटों में से ससीम सेटों को छाँटो :
(i) $A=\left\{x \mid x^{2}=1\right\}$
(ii) $B\{-x \mid x \in N\}$
(iii) $\mathrm{C}=\left\{\mathrm{x} \mid \mathrm{x} \in 2^{\mathrm{n}}, \mathrm{n} \in \mathrm{N}\right\}$
(iv) $\mathrm{D}=\{\mathrm{x} \mid \mathrm{x} \in \mathrm{Z},-5<\mathrm{x}<5\}$

हल : तालिका पद्धति से लिखने से
(i) $\mathrm{A}=\{1,-1\}$
(ii) $\{-1,-2,-3, \ldots \ldots . .$.
(iii) $\mathrm{C}=\{2,4,8,16, \ldots \ldots \ldots .$.
(iv) $\mathrm{D}=\{-4,-3,-2,-1,0,1,2,3,4\}$

इनमें से A और D ससीम सेट हैं ।

1.5 शून्य सेट (Empty Set) :

परिमेय संख्याओं में शून्य ' 0 ' जैसे एक महत्त्वपूर्ण भूमिका है, उसी प्रकार सेटों में भी 'शून्य सेट' की भूमिका महत्त्वपूर्ण है ।
परिभाषा : जिस सेट में कोई उपादान नहीं होता, वह सेट एक शून्य सेट कहलाता है । शून्य सेट को ϕ संकेत द्वारा सूचित किया जाता है । ϕ का एक विकल्प \{ $\}$ रूप है ।

उदाहरण स्वरूप : (i) $A=\{x \mid x \neq x\}=\phi$ । अर्थात् A सेट का प्रत्येक उपादान अपने साथ बराबर नहीं है । इसलिए यह शून्य सेट है । क्योंकि ऐसी कोई भी वस्तु नहीं है, जो अपने साथ बराबर नहीं होता ।
(ii) $B=\{x \mid x \in N, 1<x<2=\phi$
B सेट के उपादान 1 और 2 के बीच की प्राकृत संख्याएँ हैं । लेकिन 1 और 2 के बीच कोई प्राकृत संख्या नहीं है । इसलिए B एक शून्य सेट है ।

1.6 उपसेट (Sub Set) :

A और B सेट युग्म में यदि A सेट का प्रत्येक उपादान B सेट का उपादान होता है, तब सेट A को सेट B का एक उपसेट कहा जाता है । $(A$ is a subset $o f B)$. संकेत से उसे $A \subset B$ लिखा जाता है ।
उदाहरण स्वरूप मान लो $\mathrm{A}=\{1,2,3\}$

$$
\mathrm{B}=\{0,1,2,3,4)
$$

तब $\mathrm{A} \subset \mathrm{B}$ होगा । क्योंकि A सेट का प्रत्येक उपादान B सेट में है । A, B का एक उपसेट होगा तो B को A का अधिसेट (Super Set) कहा जाएगा । संकेत से लिखा जाएगा :- $\mathrm{B} \supset \mathrm{A}$ ।
याद रखो : (i) प्रत्येक सेट अपना उपसेट होता है ।
अर्थात् यदि A एक सेट है तब $\mathrm{A} \subset \mathrm{A}$ होगा ।
उसी प्रकार $\phi \subset \phi$ होगा । क्योंकि A सेट का प्रत्येक उपादान उसी सेट A का भी उपादान है ।
(ii) चूँकि शून्य सेट में कोई उपादान नहीं होता, इसलिए वह किसी भी सेट का एक उपसेट है । अर्थात्, यदि S एक सेट हैं, तब $\phi \subset \mathrm{S}$ होगा ।

तुम्हारे लिए क्रिया कलाप :

(i) दो शून्य सेटों के उदाहरण दो ।
(चर्चा में आए सेटों के अलावा)

1.7 सेट संक्रिया (Set Operation) :

प्राकृत संख्या के क्षेत्र में योग, व्यवकलन, गुणा जिस प्रकार एक-एक संक्रिया है, उसी प्रकार सेटों में भी संयोग, प्रतिच्छेद और अंतर भी एक-एक प्रक्रिया है । हम यहाँ सेट संबंधी इन संक्रियाओं पर चर्चा करेंगे ।
(a) संयोग (Union) :
A और B सेट युग्म से आए सभी उपादानों को लेकर बने सेट को A और B संयोग कहा जाता है । और यह $A \cup$ B संकेत से सूचित किया जाता है । $A \cup B$ का एक सेट है । इसे सूत्र प्रणाली से लिखा जाएगा :
$A \cup B=\{x \mid x \in A$ या $x \in B\}$
यहाँ $\mathrm{x} \in \mathrm{A}$ या $\mathrm{x} \in \mathrm{B}$ का अर्थ है :- x उपादान A या B अथवा दोनों A और B के उपादान हैं । उदाहरण स्वरूप :

यदि $\mathrm{A}=\{1,3,5\}, \mathrm{B}=\{2,4,6\}$ तब
$\mathrm{A} \cup \mathrm{B}=\{1,2,3,4,5,6\}$ होगा ।
फिर $\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{T}=\{\mathrm{b}, \mathrm{c}\}$, तब $\mathrm{S} \cup \mathrm{T}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ है ।
(b) प्रतिच्छेद(Intersection):
A और B सेट युग्म में आए उपादानों में से जो उपादान दोनों A और B के उपादान होंगे उनको लेकर बने सेट को A और B का प्रतिच्छेदे कहा जाता है । और इसे $A \cap B$ संकेत द्वारा सूचित किया जाता है ।

सूत्र पूणाली से $\mathrm{A} \cap \mathrm{B}=\{\mathrm{x} \mid \mathrm{x} \in \mathrm{A}$ और $\mathrm{x} \in \mathrm{B}$ लिखेंगे ।
यहाँ $\mathrm{x} \in \mathrm{A}$ और $\mathrm{x} \in \mathrm{B}$ का अर्थ है- A और B दोनों सेटों में एक उभयनिष्ठ उपादान (Common element) है ।

दिए गए उदाहरणों को ध्यान से देखो :
मान लो $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{1,3,5\}$ तब $\mathrm{A} \cap \mathrm{B}=\{1,3\}$
उसी प्रकार $\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{T}=\{\mathrm{p}, \mathrm{q}, \mathrm{r}\}$ तब $\mathrm{S} \cap \mathrm{T}=\phi$ अथवा $\mathrm{S} \cap \mathrm{T}=\{ \}$
क्योंकि S और T दोनो सेटों में कोई उभयनिष्ठ उपादान नहीं हैं । इस क्षेत्र में हम S और T सेट युग्म को बिना प्रतिच्छेद के सेट (Disjoint sets or Non-intersecting Set) कहेंगे ।
(c) अंतर (Difference) :

यदि A और B दो सेट हैं, तब A सेट के जो उपादान B सेट में नहीं है, उनको लेकर बने सेट को A अंतर B सेट कहा जाता है । हम इसे $\mathrm{A}-\mathrm{B}$ द्वारा सूचित करते हैं ।
सूत्र प्रणाली में $\mathrm{A}-\mathrm{B}=\{\mathrm{x} \mid \mathrm{x} \in \mathrm{A}$ और $\mathrm{x} \notin \mathrm{B}\}$ लिखनें उसी प्रकार $\mathrm{B}-\mathrm{A}=\{\mathrm{x} \mid \in \mathrm{B}$ और $\mathrm{x} \notin \mathrm{A}\}$ लिखनें । उदाहरण स्वरूप, मान लो $\mathrm{A}=\{1,2,3,4\},, \mathrm{B}=\{3,4\}$ तब $\mathrm{A}-\mathrm{B}=\{1,2\}$ और $\mathrm{B}-\mathrm{A}=\phi$ होगा ।
तुम्हारे लिए क्रिया-कलाप :
(i) मान लो $\mathrm{A}=\{1,2,3,4,5,6\}, \mathrm{B}=\{2,4,6\}$

तब $\mathrm{A} \cup \mathrm{B}, \mathrm{A} \cap \mathrm{B}, \mathrm{A}-\mathrm{B}$ और $\mathrm{B}-\mathrm{A}$ ज्ञात करो ।
2. शून्यस्थान भरो :
$\mathrm{A} \cup \mathrm{A}=$ \qquad
\qquad $\mathrm{A}-\mathrm{A}=$
$\mathrm{A} \cup \phi=$ \qquad $\mathrm{A} \cap \phi=$ \qquad $\mathrm{A}-\phi=$
\qquad
\qquad

1.8 वेन चित्र (Venn Diagram) :

सेट, उपसेट, सेट की संक्रिया को अधिक सरलता से समझने के लिए हम सेट तत्व में चित्र को सहायता लेते हैं । इसे वेन चित्र कहते हैं । पहले प्रख्यात अंग्रेज तर्कशास्त्रवित् जन वेनने (John Venn 1834-1883) इस चित्र की अवधारणा दी थी । चित्र में सेटों को एक बंद क्षेत्र या वृताकार क्षेत्र द्वारा सूचित किया जाता है । बंद क्षेत्र के अन्त: भाग में सेट के उपादान रहते हैं ।
उदाहरण स्वरूप :
(i) $\mathrm{S}=\{1, \mathrm{~m}, \mathrm{n}\}$, सेट का वेन-चित्र बगल में दर्शाया गया है ।
(ii) यदि दो सेट A और B एक दूसरे का प्रतिच्छेद नहीं करते, तब इसका वेन-चित्र बगल में दर्शाया गया है ।

यदि A सेट के कुछ उपादान, B सेट में होते हैं, तब इसका वेन-चित्र बगल में दर्शाया गया है ।

(iii) दो सेटों A और B में से जब $\mathrm{A} \subset \mathrm{B}$ हो, तब वह वेन-चित्र बगल में दर्शाया गया है । पहले से जिन सेट संक्रियाओं की चर्चा की गई है, उन्हें भी हम वेन-चित्रों द्वारा दर्शाने में समर्थ होंगे ।

उदाहरण 4 :

जब $\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ और $\mathrm{T}=\{\mathrm{c}, \mathrm{e}, \mathrm{f}, \mathrm{g}\}$ हैं,
तब $\mathrm{S} \cup \mathrm{T}, \mathrm{S} \cap \mathrm{T}$ और $\mathrm{S}-\mathrm{T}$ ज्ञात करके उनके वेन-चित्र दर्शाओ ।

आकृति 1.4

हल : (a) $\mathrm{S} \cup \mathrm{T}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\} \cup\{\mathrm{c}, \mathrm{e}, \mathrm{f}, \mathrm{g}\}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}\}$
(b) $\mathrm{S} \cap \mathrm{T}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\} \cap\{\mathrm{c}, \mathrm{e}, \mathrm{f}, \mathrm{g}\}=\{\mathrm{c}\}$
(c) $\mathrm{S}-\mathrm{T}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}-,\{\mathrm{c}, \mathrm{e}, \mathrm{f}, \mathrm{g}\}=\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}$

$\mathbf{S} \cup \mathbf{T}$ छायांकित
(a)

(b)

(c)

आकृति 1.5

उदाहरण 5 : दिए गए वेन-चित्र से $\mathrm{A} \cup \mathrm{B}, \mathrm{A} \cap \mathrm{B}$ और $\mathrm{A}-\mathrm{B}$ को तालिका प्रणाली से लिखो ।
हल $: ~ A \cup B=\{a, b, c, d, e, f, g, h\}$
$\mathrm{A} \cap \mathrm{B}=\{\mathrm{c}, \mathrm{d}\}$
$A-B=\{a, b, e\}$

(आकृति 1.6)

अभ्यास -1

1. $\mathrm{A}=\{1,2,3,4\}$ है । निम्न उक्तिओं में से जो सही है उनके लिए T और गलत के लिए F लिखो ।
(i) $3 \in \mathrm{~A}$
(ii) $5 \in \mathrm{~A}$
(iii) $4 \notin \mathrm{~A}$
(iv) $7 \notin \mathrm{~A}$
(v) $\{3\} \in \mathrm{A}$
(vi) $\{3\} \subset \mathrm{A}$
(vii) $3 \subset \mathrm{~A}$
(viii) $\{3,4\} \in \mathrm{A}$
(ix) $\{3,4\} \subset \mathrm{A}$
(x) $\{1,2,3,4\} \in \mathrm{A}$
(xi) $\{1,2,3,4\} \subset \mathrm{A}$
2. $\subset, \supset,=, \in, \notin$ संकेतों में से उपयुक्त संकेत चुनकर नीचे के शून्य-स्थान भरो :
(i) a. $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
(ii) $\{a\}$
$\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
(iii) $\{\mathrm{c}, \mathrm{a}, \mathrm{b}\}$ \qquad $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
(iv) d .
\{a, b, c, \}
(v) $\{b, c\}$ \qquad $\{\mathrm{a}, \mathrm{c}, \mathrm{b}\}$
(vi) $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ \qquad \{a, b \}
3. निम्न सेटों करो तालिका-पद्धति में लिखो :
(i) $\{\mathrm{x} \mid \mathrm{x} \in \mathrm{N}$ और $1<\mathrm{x}<10\}$
(ii) $\{2 \mathrm{n} \mid \mathrm{n} \in \mathrm{N}$ और $\mathrm{n} \leq 4\}$
(iii) $\{\mathrm{n} \mid \mathrm{n}$ एक युग्म अभाज्य संख्या $\}$
(iv) $\{\mathrm{x} \mid \mathrm{x}$ एक भाज्य संख्या, $\mathrm{x} \in \mathrm{N}$ और $\mathrm{x}<10\}$
(v) $\{x \mid x$ एक पूर्णांक $-5 \leq x<4\}$
(vi) $\{\mathrm{x} \mid \mathrm{x}$ एक हफ्ते का एक दिन $\}$
(vii) $\{x \mid x$ एक प्राकृत संख्या, $2<x<3\}$
(viii) $\left\{\mathrm{x} \mid \mathrm{x}=2^{\mathrm{n}}, \mathrm{n} \in \mathrm{N}\right.$ और $\left.5 \leq \mathrm{x} \leq 27\right\}$
4. निम्न सेटों को सूत्र-पद्धति में लिखो :
(i) $\{1,3,5,7,9,11\}$
(ii) $\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\}$
(iii) $\{-2,-1,0,1,2\}$
(iv) $\{2,3,5,7,11,13\}$
(v) $\{2,4,6,8,10$, \qquad (vi) $\{3,6,9,12,15\}$
(vii) $\{5,25,125,625\}$
(viii) $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$,
Z $\}$
(ix) $\{2,4,8,16,32\}$
5. निम्न शब्दों मे प्रयुक्त अक्षरों का सेट लिखो ।
(i) Mathematics
(ii) arithmetic
(iii) programme
(iv) Committee
6. जब $\mathrm{A}=\{1,2,3,4,5,6\}$ और $\mathrm{B}=\{2,4,6,8\}$ तब $\mathrm{A} \cup \mathrm{B}$ और $\mathrm{A} \cap \mathrm{B}$ को तालिका-प्रणाली में लिखो ।
7. जब $\{x \mid x \in N$ और $1<x \leq 6\}$ और

$$
\mathrm{B}=\{\mathrm{x} \mid \mathrm{x} \in \mathrm{~N} \text { और } 4<\mathrm{x} \leq 10\} \text { तब } \mathrm{A} \cup \mathrm{~B} \text { और } \mathrm{A} \cap \mathrm{~B} \text { को तालिका-प्रणाली में लिखो । }
$$

8. $\mathrm{A}=\{1,2,3,4\}, \mathrm{B}=\{2,3,5\}$ और $\mathrm{C}=\{2,4,6\}$ हो, निम्न सेटों को तालिका-प्रणाली में लिखो ।
(i) $\mathrm{A} \cup \mathrm{B}$
(ii) $\mathrm{A} \cap \mathrm{C}$
(iii) $\mathrm{B} \cap \mathrm{C}$
(iv) $\mathrm{A} \cup \mathrm{C}$
(v) $\mathrm{B} \cup \mathrm{C}$
(vi) $\mathrm{A} \cap \mathrm{B}$
9. बगल में दिए गए वेन-चित्र को देखकर प्रश्नों के उत्तर दो :
(i) सेट A और सेट B को तालिका पद्धति में लिखो ।
(ii) $\mathrm{A} \cap \mathrm{B}$ को तालिका पद्धति में लिखो ।
(iii) $\mathrm{A} \cup \mathrm{B}$ को तालिका पद्धति में लिखो ।
(iv) $\mathrm{A}-\mathrm{B}$ को तालिका पद्धति में लिखो ।
(v) $\mathrm{B}-\mathrm{A}$ को तालिका पद्धति में लिखो ।
10. बगल में वेन-चित्र को देखकर निम्न प्रश्नों के उत्तर दो :

(आकृति 1.7)
(i) सेट A और सेट B को तालिका पद्धति में लिखो ।
(ii) $\mathrm{A} \cap \mathrm{B}$ को तालिका पद्धति में लिखो ।
(iii) $\mathrm{A} \cup \mathrm{B}$ को तालिका पद्धति में लिखो ।
(iv) $\mathrm{A} \cup \phi$ को तालिका पद्धति में लिखो ।
(v) $\mathrm{A} \cap \phi$ को तालिका पद्धति में लिखो ।
11. $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mathrm{B}=\{\mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}\}$ हो तो

(आकृति 1.8)
(a) $\mathrm{A}-\mathrm{B}$ और $\mathrm{B}-\mathrm{A}$ सेटों को तालिका-पद्धति में लिखो ।
(b) $(\mathrm{A}-\mathrm{B}) \cup(\mathrm{B}-\mathrm{A})$ सेटों को तालिका-पद्धति में लिखो ।
(a) $(\mathrm{A}-\mathrm{B}) \cap(\mathrm{B}-\mathrm{A})$ सेट ज्ञात करो ।
o০○

2.1. भूमिका (Introductin) :

परिमेय संख्या (Rational Number) पर चर्चा करने से पहले हम पिछली कक्षा में वर्णित प्राकृत संख्या, पूर्ण संख्या और पूर्णांक पर संक्षेप में चर्चा करेंगे ।

2.1.1 प्राकृत संख्या (Natural Numbers) :

एक सामान्य मनुष्य के दैनंदिन जीवन और आजीविका में पहले जिन संख्या-समूह का प्रयोग हुआ था, वह प्राकृत संख्या कहलाता है ।

इस संख्या-समूह के सेट को N द्वारा दर्शाया जाता है । $\mathrm{N}=\{1,2,3,4, \ldots \ldots\}$ है ।

2.1.2 पूर्ण संख्या (Extended Natural Numbers/Whole Numbers) :

मान लो तुम्हरे पास 10 रुपये हैं ।
तुमने 10 रुपए कीमतवाली एक कलम खरीदी । तुम्हारे पास और कितना बचा ? तुम्हारे पास ' 0 ' रुपया रहा ।
यह भारतीय गणितजों का अवदान है, ऐसा माना जाता है । गणन पद्धति में इसका व्यापक प्रयोग हुआ । परवर्ती समय से इसे गणन-संख्या सेट में शामिल किया गया । इसे संप्रसारित स्वाभाविक संख्या (Extended natural number set) या समग्र/पूर्ण संख्या सेट Whole number set कहा जाता है । इस संख्या समूह को N^{*} या ' W ' द्वारा दर्शाया जाता है ।

$$
\mathrm{N}^{*}=\{0,1,2,3,4, \ldots \ldots . . .\}
$$

2.1.3 पूर्णांक (Integers) :

प्राकृत संख्याएँ एक-एक धनात्मक पूर्णांक हैं । कुछ निश्चित स्थितियों में संख्या आधारित गाणितीय परिप्रकाश के लिए कैसे धनात्मक पूर्णांक पर्याप्त नहीं है, उसके बारे में कुछ ज्ञात करेंगे ।

मान लो, तुम्हारे पास 10 रुपए हैं । तुम्हें 11 रुपए की एक कलम खरीदनी है । तुम्हारे पास इसे खरीदने के लिए पर्याप्त रुपए नहीं है । इस स्थिती का हल करने के लिए तुम्हे एक रुपया ऋण करना पड़ेगा । इस स्थिति में गाणितीय हल करना केवल धनात्मक संख्या 1 से न होकर ऋणात्मक 1 (जिसे हम -1 के रूप में लिखते हैं) से ही होगा ।

अर्थात् $10-11=-1$, उसी प्रकार $10-12=-2$
इस स्थिति का हल निकालने के लिए $-1,-2,-3, \ldots \ldots$. आदि ऋणात्मक पूर्णांक की खोज हुई ।
याद रखो : ‘ 0 ' एक संख्या है जो न धनात्मक है, न ऋणात्मक ।
धनात्मक पूर्णांक, शून्य और ऋणात्मक पूर्णांक समूह को हम ' Z ' सेट के रूप में व्यक्त करते हैं ।
अर्थात् $\mathrm{Z}=\{\ldots . . .,-4,-3,-2,-1,0,1,2,3,4, \ldots \ldots$.
Z सेट एक असीम सेट है । N सेट Z सेट का एक उपसेट है । अर्थात् $\mathrm{N} \subset \mathrm{Z}$ है । उसी प्रकार धनात्मक पूर्णांक सेट $\{1,2,3, \ldots \ldots .$.$\} और ऋणात्मक पूर्णांक सेट है \{\ldots,-4,-3,-2,-1\}$ एक-एक असीम सेट हैं । प्रत्येक पूर्णांक सेट का एक-एक उपसेट है ।
टीका : अधनात्मक पूर्णांक (Non-Positive Integers) सेट $=\{\ldots \ldots . .4,-3,-2,-1,0\}$
अऋणात्मक पूर्णांक (Non-Negative Integers) सेट
या पूर्ण संख्या सेट $\left(\mathrm{N}^{*}\right)=\{0,1,2,3 \ldots \ldots . . .$.
दोनों सेट असीम सेट हैं । दोनों सेटों के संयोग से पूर्णांक सेट (Z) बनता है ।
पूर्णांकों के संख्या-रेखा के बिंदुओं के द्वारा दर्शाया जा सकता है । नीचे दी गई संख्या-रेखा को ध्यान से देखो :

सरल रेखा के किसी भी बिंदु को ' 0 ' नाम से नामकरण करो । इस बिंदु को शून्य (0) संख्या का प्रतीक मान लो । एक निश्चित लंबाई लेकर ' 0 ' बिंदु के दाहिनी ओर A बिंदु दर्शाओ । इस बिंदु को संख्या 1 का प्रतीक कहो । $\overrightarrow{\mathrm{OA}}$ से OA की लंबाई के बराबर रेखाखंड A के दाहिनी तरफ की ओर प्रतिच्छेद करो । प्रतिच्छेद बिंदुओं के नाम B, C आदि दो । ये बिंदु क्रमश: $2,3, \ldots$. आदि के प्रतीक बनेंगे । इस प्रकार N सेट के सभी उपादानों के लिए सरलरेखा पर ' O ' के दाहिनी ओर बिंदुओं को दर्शाया जा सकेगा । ' O ' के बाईं ओर A^{\prime}, $\mathrm{B}^{\prime}, \mathrm{C}$ ' बिंदुओं को दर्शाओ जैसे $\mathrm{OA}=\mathrm{OA}^{\prime}=\mathrm{A}^{\prime} \mathrm{B}^{\prime}=\mathrm{B}^{\prime} \mathrm{C}^{\prime} \ldots$. अब $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$ बिंदु क्रमशः ऋणात्मक संख्या $-1,-2,-3 \ldots \ldots$. आदि के प्रतीक होंगे । इस प्रकार सेट Z (पूर्णांक सेट) के प्रत्येक उपादान के लिए सरलरेखा पर बिंदुओं को दर्शाया जा सकेगा । उस सरलरेखा को संख्या-रेखा (Number Line) कहा जाता है । उसे पूर्णांक सूचक रेखा चित्र भी कहा जाता है ।

यहाँ याद रखना होगा कि Z का प्रत्येक उपादान रेखाचित्र पर दाहिनी ओर के उपादानों से छोटा है । अथवा Z का प्रत्येक उपादान रेखाचित्र में इसके बाई ओर के उपादानों से बड़ा है ।

2.2 परिमेय संख्या (Rational Number) :

मान लो p और q दोनों पूर्णांक हैं और $\mathrm{q} \neq 0$ है तब p को q से भाग देने पर क्या हमें एक पूर्णांक मिल सकेगा ? 6 को 3 से भाग देने पर भागफल 2 एक पूर्णांक होता हैं । लेकिन 6 को 5 से भाग देने पर भागफल $\frac{6}{5}$ होगा, जो एक पूर्णांक नहीं है । तब भागसंक्रिया को अधिक व्यापक और 0 से भिन्न किसी भी पूर्णांक से भाग संक्रिया को अर्थपूर्ण बनाने के लिए हमें संख्या संबधी ज्ञान का परिसर बढ़ाना पड़ेगा ।

जब \mathbf{p} और q दोनों पूर्णांक हो और $\mathrm{q} \neq 0$ है तब $\mathrm{p} \div \mathrm{q}=\frac{\mathrm{p}}{\mathrm{q}}$ को परिमेय संख्या कहते हैं ।
सभी परिमेय संख्याओं के सेट को ' Q ' संकेत से व्यक्त किया जाता है ।
क्योंकि m को $\frac{\mathrm{m}}{1}$ के रूप में व्यक्त किया जा सकता है । इस दृष्टि से ' 0 ' भी एक परिमेय संख्या है ।
$(\mathrm{Q}$ सेट एक असीम सेट है और $\mathrm{N} \subset \mathrm{Z} \subset \mathrm{Q}$ है ।)
परिमेय संख्या का हर $\mathrm{q} \neq 0$, क्योंकि किसी भी संख्या के ' 0 ' से भाग देना संभव नहीं है ।

2.2.1 परिमेय संख्याओं का गुणा-धर्म (Properties of Rational Numbers) :

1. संवृत्त नियम (Closure Law) :
(i) प्राकृत संख्या (Natural Numbers) और पूर्ण संख्या (Extended Natural Numbers) :

तुम्हे पिछली कक्षा में प्राकृत संख्या में विभिन्न बीजगाणितीय प्रक्रियाओं के लिए इस नियम के बारे में पढ़ा है । आओ, निम्न सारणी के माध्यम से उन्हें फिर से याद करें :

संक्रिया	उदाहरण	टिप्पणी
योग	$1+5=6$ (प्राकृत संख्या) $7+5=12$ (यहभी प्राकृत संख्या है) किन्हीं दो पूर्ण संख्याओं a और b के लिए $\mathrm{a}+\mathrm{b}$ एक प्राकृत संख्या है ।	प्राकृत संख्या के सेट में योग संक्रिया संवृत नियम पालन करती है । पूर्ण संख्या के लिए यह भी प्युक्त है ।
व्यवकलन	$5-2=3$ (प्राकृत संख्या) $2-5=-3$ (प्राकृत संख्या नहीं है)	प्राकृत संख्या-सेट में व्ववकलन संवृत्त नियम का पालन नहीं करता । पूर्ण संख्या के लिए यह भी प्रयुक्त है ।
गुणन	$2 \times 4=8$ (प्राकृत संख्या) $3 \times 7=21$ (प्राकृत संख्या) जब a और b दो प्राकृत संख्याएँ हो तो उनका गुणनफल $\mathrm{a} \times \mathrm{b}$ या ab भी एक प्राकृत संख्या होगी ।	प्राकृत संख्या सेट में गुणन संक्रिया संवृत्त नियम का पालन करती है । पूर्ण संख्या के लिए भी यह प्रयुक्त है ।
भाग	$8 \div 4=2$ (प्राकृत संख्या) $5 \div 8=\frac{5}{8}$ (प्राकृत संख्या)	प्राकृत संख्या सेट में भाग संक्रिया संवृत्त नियम का पालन

(ii) पूर्णांक (Integers) :

आओ, पूर्णांक के सेट में विभिन्न बीज गणितीय संक्रियाओं के लिए संवृत्त नियम के संबंध में चर्चा करेंगे ।

संक्रिया	उदाहरण	टिप्पणी
योग	$0+5=5$ (एक पूर्णांक है ।) $7+5=12$ (एक पूर्णांक है ।) किन्हीं दो पूर्णांकों a और b के लिए $\mathrm{a}+\mathrm{b}$ एक पूर्णांक होगा ।	पूर्णांक के सेट में योग संक्रिया संवृत नियम पालन करती है ।
व्यवकलन	$5-2=3$ (एक पूर्णांक है ।) $2-5=-3$ (एक भी पूर्णांक है ।) a और b दो पूर्णांकों के लिए $\mathrm{a}-\mathrm{b}$ एक पूर्णांक भी होता है ।	पूर्णांक के सेट में व्यवकलन संवृत्त नियम का पालन करता है ।
गुणन	$0 \times 3=0$ (एक पूर्णांक है ।) $3 \times 7=21$ (एक भी पूर्णांक है ।) a और b कोई दो पूर्णांक हो तो ab भी एक पूर्णांक होगा ।	पूर्णांक के सेट में गुणन संक्रिया संवृत्त नियम का पालन करती है ।
भाग	$-14 \div 2=-7$ (एक पूर्णांक है ।) $5 \div 8=\frac{5}{8}$ (एक पूर्णांक नहीं है ।)	पूर्णांक के सेट में भाग संक्रिया संवृत्त नियम का पालन नहीं करती ।

उपर्युक्त सारणी से हमें ज्ञात हुआ कि पूर्णांक सेट में योग, व्यवकलन, गुणन और संक्रियाओं में संवृत्त नियम का पालन होता है, जबकि भाग-संक्रिया में उस नियम का पालन का नहीं होता ।

(iii) परिमेय संख्या (Rational Numbers) :

(a) योग-संक्रिया : अब कुछ परिमेय संख्या युग्म का योग निकाला जाए ।
$\frac{3}{8}+\frac{(-5)}{7}=\frac{21+(-40)}{56}=\frac{-19}{56}$ (यह एक परिमेय संख्या है ।)
उसी प्रकार $-\frac{3}{8}+\frac{(-4)}{5}=\frac{-15+(-32)}{40}=\frac{-47}{40}$ (यह भी एक परिमेय संख्या है ।)
$\frac{4}{7}+\frac{6}{11}=\ldots \ldots$. क्या यह भी एक परिमेय संख्या है ।
और कुछ परिमेय संख्या-युग्म के लिए ऐसी योग-संक्रिया की परिणाम का परिक्षण करो ।
इस परीक्षण से हमें ज्ञात होगा कि दो परिमेय संख्याओं का योग एक परिमेय संख्या भी होगी । अर्थात् परिमेय संख्या सेट में योग-संक्रिया संवृत्त नियम का पालन करती है ।

अर्थात् जब $a, b \in Q$ तब $a+b \in Q$ होंगे ।
(b) व्यवकलन-संक्रिया :

परिमेय संख्याओं के कुछ युग्म लेकर हम व्ववकलन करेंगे और देखेंगे कि दो परिमेय संख्याओं का व्ववकलन एक परिमेय संख्या हो रही है या नहीं ।
$-\frac{5}{7}-\frac{2}{3}=\frac{-5 \times 3-2 \times 7}{21}=\frac{-15-14}{21}=\frac{-29}{21}$ यह एक परिमेय संख्या है ।
उसी प्रकार $\frac{5}{8}-\frac{4}{5}=\frac{25-32}{40}=\frac{-17}{40}$ (यह भी परिमेय संख्या है ।)
$\frac{3}{7}-\left(\frac{-8}{5}\right) \ldots \ldots . .$. । क्या यह भी परिमेय संख्या होगी ?
और कुछ परिमेय संख्या-युग्म लेकर ऐसे व्ववकलन ज्ञात करो । तुम्हें ज्ञात होगा कि परिमेय संख्या सेट में व्यवकलन संक्रिया संवृत नियम का पालन करती है ।

अर्थात् $a, b \in Q$ हो तो $a-b \in Q$ होगा ।
(c) गुणन-संक्रिया : हम अब दो परिमेय संख्याओं के गुणन फल पर चर्चा करेंगे ।
$-\frac{2}{3} \times \frac{4}{3}=-\frac{8}{15}, \quad \frac{3}{7} \times \frac{2}{5}=\frac{6}{35}$ (यहाँ गुणनफल परिमेय संख्याएँ हैं ।)
$\frac{-4}{5} \times \frac{-6}{11}=$ \qquad । (यह क्या एक परिमेय संख्या होगी ?)
ऐसे कुछ परिमेय संख्या-युग्मों को लेकर गुणनफल ज्ञात करो । तुम इस निष्कर्ष पर पहूँचोगे कि दो परिमेय संख्याओं का गुणनफल एक परिमेय संख्या है । अतएव परिमेय संख्या-सेट में गुणन-संक्रिया संवृत्त नियम का पालन करती है ।

अर्थात् जब $\mathrm{a}, \mathrm{b} \in \mathrm{Q}$ हैं तो $\mathrm{a} \times \mathrm{b} \in \mathrm{Q}$ होंगे ।
(d) भाग-संक्रिया : अब निम्न उदाहरणों पर ध्यान दो ।
$-\frac{5}{3} \div \frac{2}{5}=\frac{-5}{3} \times \frac{5}{2}=\frac{-25}{6}$ (यह एक परिमेय संख्या है ।)
उसी प्रकार $\frac{2}{7} \div \frac{5}{3}=\frac{2}{7} \times \frac{3}{5}=\frac{6}{35}$ (यह भी एक परिमेय संख्या है ।)
$-\frac{3}{8} \div \frac{-2}{9}=\ldots$. । (क्या यह एक परिमेय संख्या होगी ?)
लेकिन किसी भी एक परिमेय संख्या a के लिए $a \div 0$ निरर्थक है । यहाँ परिमेय संख्या-सेट में भाग-संक्रिया संवृत नियम का पालन नहीं करती । पर शून्य को छोड़कर अन्य परिमेय संख्याओं के लिए भाग-संक्रिया संवृत नियम का पालन करती है ।

खुद करो : दिए गए सेट विभिन्न संक्रियाओं में संवृत्त नियम का पालन करते है या नहीं : (हाँ या ना) के द्वारा सारणी के शून्य-स्थान भरो ।

संख्या-सेट	संवृत्त नियम			
	योग	व्यवकलन	गुणन	भाग
परिमेय				
पूर्णांक				
प्रावृत				
पूर्ण				

2. क्रमविनिमय नियम (Commutative Law) :
(i) प्राकृत संख्या : आओ, हम अब प्राकृत संख्याओं में क्रमविनिमय नियम को याद करें ।

संक्रिया	उदाहरण	टिप्पणी
योग	$0+7=7+0=7$ किन्हीं दो प्राकृत संख्याओं a और b के लिए $\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a}$	योग संक्रिया क्रमविनिमय नियम का पालन करती है ।
व्यवकलन	$5-3 \neq 3-5$	व्यवकलन-संक्रिया क्रम-विनिमय नियम का पालन नहीं करती ।
गुणन	$5 \times 3=3 \times 5$ $3 \times 7=21$	गुणन संक्रिया क्रम-विनिमय नियम का पालन करती है ।
भाग	$5 \div 3 \neq 3 \div 5$	भाग-संक्रिया क्रम-विनिमय नियम का पालन नहीं करती ।

पूर्ण संख्या के क्षेत्र में उपर्युक्त प्रक्रियाएँ क्रम विनिमय नियम का पालन करती हैं या नहीं, खुद परीक्षण करके देखो ।
(ii) पूर्णांक : हम अब पूर्णांकों के लिए विभिन्न संक्रियाओं में क्रमविनिमय नियम लागू होता है या नहीं, याद करें :

संक्रिया	उदाहरण	टिप्पणी
योग	$0+7=7+0=7$	योग संक्रिया क्रम-विनिमय नियम का पालन करती है ।
व्यवकलन	$5-(-3) \neq-3-5$	व्यवकलन-संक्रिया क्रम-विनिमय नियम का पालन नहीं करती ।
गुणन	$-3 \times 5=5 \times(-3)$	गुणन संक्रिया क्रम-विनिमय नियम का पालन करती है ।
भाग	$-3 \div 5 \neq 5 \div(-3)$	भाग-संक्रिया क्रम-विनिमय नियम का पालन नहीं करती ।

(iii) परिमेय संख्या :
(a) योग-संक्रिया : अब हम कुछ परिमेय संख्या-युग्मों का योगफल ज्ञात करेंगे ।
$\frac{-2}{3}+\frac{5}{7}=\frac{-14+15}{21}=\frac{1}{21}, \quad \frac{5}{7}+\left(\frac{-2}{3}\right)=\frac{15-14}{21}=\frac{1}{21}$
अतएव $-\frac{2}{3}+\frac{5}{7}=\frac{5}{7}+\left(-\frac{2}{3}\right)$

उसी प्रकार $\frac{-6}{5}+\left(\frac{-8}{3}\right)=\frac{-58}{15}$

$$
\frac{-8}{3}+\frac{-6}{5}=\frac{-58}{15}
$$

अतएव $\frac{-6}{5}+\frac{-8}{3}=\frac{-8}{3}+\frac{-6}{5}$
अब $-\frac{3}{8}+\frac{1}{7}=\frac{1}{7}+\left(-\frac{3}{8}\right)$ का खुद परीक्षण करो ।
तुम्हें ज्ञात होगा कि दो परिमेय संख्याओं को किसी भी क्रम से योग किया जा सकेगा । इसलिए हम कहते हैं परिमेय संख्या के क्षेत्र में योग क्रम विनिमय है । अर्थात् जब a और b दो परिमेय संख्याएँ हैं तब $a+b=b+a$ होगा ।
(b) व्यवकलन-संक्रिया : $\frac{2}{3}-\frac{5}{4}=\frac{-7}{12}$ और $\frac{5}{4}-\frac{2}{3}=\frac{7}{12}$ इसलिए $\frac{2}{3}-\frac{5}{4} \neq \frac{5}{4}-\frac{2}{3}$

अर्थात् व्यवकलन क्रमविनिमेय नहीं है ।
उसी प्रकार परीक्षण करके देखो कि $\frac{1}{2}-\frac{2}{3} \neq \frac{2}{3}-\frac{1}{2}$
(c) गुणन-संक्रिया : $\frac{7}{3} \times \frac{6}{5}=\frac{-42}{15}$ और $\frac{6}{5} \times\left(-\frac{7}{3}\right)=\frac{-42}{15}$

उसी प्रकार $\frac{-8}{9} \times\left(-\frac{4}{7}\right)=\frac{-4}{7} \times\left(-\frac{8}{9}\right)$
ऐसे कुछ परिमेय संख्या-युग्मों का गुणन करके देखो । तुम्हें ज्ञात होगा कि गुणन क्रम-विनिमेय है । अर्थात् किन्हीं दो परिमेय संख्याओं a और b के लिए $a \times b=b \times a$ होगा ।
(d) भाग-संक्रिया : $\frac{-5}{4} \div \frac{3}{7} \neq \frac{3}{7} \div \frac{-5}{4}$ (परीक्षण करो)

उसी प्रकार अन्य परिमेय संख्या-युग्मों को लेकर परीक्षण करो । तुम्में ज्ञात होगा कि दो भिन्न और शून्य के अलावा परिमेय संख्याओं a और b के लिए $\mathrm{a} \div \mathrm{b} \neq \mathrm{b} \div \mathrm{a}$ होगा । (खुद परीक्षण करके देखो ।)

खुद करो : नीचे दिए गए सेट विभिन्न संक्रियाओं में क्रम विनिमय नियम का पालन करते हैं या नहीं ? (हाँ या ना) द्वारा सारणी के शून्य-स्थान भरो :

संख्या-सेट	क्रम विनिमय नियम			
	योग	व्यवकलन	गुणन	भाग
परिमेय संख्या				
पूर्णांक				
प्राकृत संख्या				
पूर्ण संख्या				

3. साहचर्य नियम (Associative Law) :

(i) प्राकृत संख्या : हम प्राकृत संख्या में साहचर्य नियम को याद करें ।

संक्रिया	उदाहरण	टिप्पणी
योग	$(3+4)+5=3+(4+5)$	योग साहचर्य है ।
व्यवकलन	$(3-4)-5 \neq 3-(4-5)$	व्यवकलन साहचर्य नहीं है ।
गुणन	$7 \times(2 \times 5)=(7 \times 2) \times 5$ $4 \times(6 \times 10)=(4 \times 6) \times 10$	गुणन साहचर्य है ।
भाग	$(3 \div 4) \div 5 \neq 3 \div(4 \div 5)$	भाग साहचर्य नहीं है ।

पूर्ण संख्या के क्षेत्र में उपर्युक्त नियमों का पालन होता है या नहीं परीक्षण करो ।
(ii) पूर्णांक : पूर्णांकों में साहचर्या के नियमों को निम्न सारणी में दर्शाया गया है ।

संक्रिया	उदाहरण	टिप्पणी
योग	$-2+[3+(-4)]=[(-2)+3]+(-4)]$ किन्हों तीन पूर्णांकों $\mathrm{a}, \mathrm{b}, \mathrm{c}$ के लिए $\mathrm{a}+(\mathrm{b}+\mathrm{c})=(\mathrm{a}+\mathrm{b})+\mathrm{c}$ होगा ।	योग साहचर्य है ।
व्यवकलन	$5-(7-3) \neq(5-7)-3$	व्यवकलन साहचर्य नहीं है ।
गुणन	$5 \times[(-7) \times(-8)]=[5 \times(-7)] \times(-8)$ किन्हों तीन पूर्णांकों $\mathrm{a}, \mathrm{b}, \mathrm{c}$ के लिए $\mathrm{a} \times(\mathrm{b} \times \mathrm{c})=(\mathrm{a} \times \mathrm{b}) \times \mathrm{c}$ होगा ।	गुणन साहचर्य है ।
भाग	$[(-10) \div 2)] \div(-5) \neq(-10) \div[2 \div(-5)]$	भाग साहचर्य नहीं है ।

(iii) परिमेय संख्याणांक :
(a) योग संक्रिया :

$$
\begin{aligned}
& -\frac{2}{3}+\left[\frac{3}{5}+\left(\frac{-5}{6}\right)\right]=\frac{-2}{3}+\left(\frac{18-25}{30}\right)=\frac{-2}{3}+\left(\frac{-7}{30}\right)=\frac{(-20)+(-7)}{30}=\frac{-27}{30} \text { और } \\
& {\left[-\frac{2}{3}+\frac{3}{5}\right]+\left(\frac{-5}{6}\right)=\left(\frac{-10+9}{15}\right)+\left(\frac{-5}{6}\right)=\frac{-1}{15}+\left(\frac{-5}{6}\right)=\frac{-2-25}{30}=\frac{-27}{30}} \\
& \therefore-\frac{2}{3}+\left[\frac{3}{5}+\left(\frac{-5}{6}\right)\right]=\left[-\frac{2}{3}+\frac{3}{5}\right]+\left(\frac{-5}{6}\right)
\end{aligned}
$$

उसी प्रकार परीक्षण करके देखो : $-\frac{1}{2}+\left[\frac{3}{7}+\left(\frac{-4}{3}\right)\right]=\left[\left(-\frac{1}{2}\right)+\frac{3}{7}\right]+\left(\frac{-4}{3}\right)$
और कुछ परिमेय संख्याएँ लेकर परीक्षण करके देखो । इससे हमें ज्ञात होगा कि परीमेय संख्याओं में योग साहचर्य है । अर्थात् $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Q}$ हो तो $\mathrm{a}+(\mathrm{b}+\mathrm{c})=(\mathrm{a}+\mathrm{b})+\mathrm{c}$ होगा ।

(b) व्यवकलन संक्रिया :

परीक्षण करके देखो : $-\frac{2}{3}-\left[\left(\frac{-4}{5}\right)-\frac{1}{2}\right]=\left[\left(\frac{-2}{3}\right)-\left(\frac{-4}{5}\right)\right]-\frac{1}{2}$ क्या सत्य है ?
बायाँ पक्ष $=\frac{-2}{3}-\left(\frac{-8-5}{10}\right)=\frac{-2}{3}-\left(\frac{-13}{10}\right)=\frac{-20+39}{30}=\frac{19}{30}$
दायाँ पक्ष $=\left(\frac{-10+12}{15}\right)-\frac{1}{2}=\frac{2}{15}-\frac{1}{2}=\frac{4-15}{30}=\frac{-11}{30}$
\therefore बायाँ पक्ष \neq दायाँ पक्ष है ।
और कुछ परिमेय संख्या लेकर परीक्षण करके देखो । इससे हमें ज्ञात हुआ कि व्यवकलन साहचर्य नहीं हैं ।
(c) गुणन संक्रिया : हम अब देखेंगे कि परिमेय संख्या में गुणन साहचर्य है या नहीं ।
$\frac{-7}{3} \times\left(\frac{5}{4} \times \frac{2}{9}\right)=\frac{-7}{3} \times \frac{10}{36}=\frac{-70}{108}=\frac{-35}{54}$ और $\left(-\frac{7}{3} \times \frac{5}{4}\right) \times \frac{2}{9}=\frac{-35}{12} \times \frac{2}{9}=\frac{-70}{108}=\frac{-35}{54}$
$\therefore \frac{-7}{3} \times\left(\frac{5}{4} \times \frac{2}{9}\right)=\left(-\frac{7}{3} \times \frac{5}{4}\right) \times \frac{2}{9}$, उसी प्रकार $\frac{2}{3} \times\left(\frac{-6}{7} \times \frac{4}{5}\right)=\left(\frac{2}{3} \times \frac{-6}{7}\right) \times \frac{4}{5}$
हमें ज्ञात हुआ कि परिमेय संख्याओं के लिए गुणन साहचर्य है ।
अर्थात् $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Q}$ के लिए $\mathrm{a} \times(\mathrm{b} \times \mathrm{c})=(\mathrm{a} \times \mathrm{b}) \times \mathrm{c}$ होगा ।
(d) भाग संक्रिया : परिक्षण करके देखो : $\frac{1}{2} \div\left[-\frac{1}{3} \div \frac{2}{5}\right] \neq\left[\frac{1}{2} \div\left(-\frac{1}{3}\right) \div \frac{2}{5}\right]$ क्या सत्य है ?

बायाँ पक्ष $=\frac{1}{2} \div\left[-\frac{1}{3} \div \frac{2}{5}\right]=\frac{1}{2} \div\left[-\frac{1}{3} \times \frac{5}{2}\right]=\frac{1}{2} \div\left(-\frac{5}{6}\right)=\frac{1}{2} \times\left(-\frac{6}{5}\right)=\frac{-3}{5}$
दायाँ पक्ष $=\left[\frac{1}{2} \div\left(-\frac{1}{3}\right) \div \frac{2}{5}\right]=\left(\frac{1}{2} \times \frac{-3}{1}\right) \div \frac{2}{5}=\frac{-3}{2} \div \frac{2}{5}=\frac{-3}{2} \times \frac{5}{2}=\frac{-15}{4}$
\therefore बायाँ पक्ष \neq दायाँ पक्ष है ।
और कुछ परिमेय संख्याएँ लेकर परीक्षण करके देखो । तुम्हें ज्ञात होगा कि परिमेय संख्याओं के लिए भाग साहचर्य नहीं है ।
खुद करो : दिए गए सेट विभिन्न प्रक्रियाओं में साहचर्य हैं या नहीं उसे सारणी में भरो :

संख्या-सेट	साहचर्य नियम			
	योग	व्यवकलन	गुणन	भाग
परिमेय संख्या				
पूर्णांक				
प्राकृत संख्या				
पूर्ण संख्या				

2.3 शून्य का तात्पर्य :

नीचे दिए गए कुछ उदाहरणों पर ध्यान दो :
$2+0=0+2=2$ (यहाँ शून्य को एक पूर्णांक से जोड़ा गया ।)
$-\frac{2}{7}+0=0+\left(-\frac{2}{7}\right)=-\frac{2}{7}$ (यहाँ शून्य को एक परिमेय संख्या से जोड़ा गया ।) और कुछ संख्याँ लेकर उसके साथ शून्य जोड़कर देखो । इससे तुम्हें क्या ज्ञात हुआ ? तुम कहोगे कि शून्य(०) को एक पूर्णांक के साथ जोड़ने से योगफल भी एक पूर्णांक होगा । उसी प्रकार (0) शून्य को एक परिमेय संख्या के साथ जोड़ने से योगफल भी एक परिमेय संख्या होगी । प्राकृत संख्या के क्षेत्र मे यही नियम भी प्रयुज्य होता है ।

सामान्यतया $\mathrm{b}+0=0+\mathrm{b}=\mathrm{b}$ (जब b पूर्णांक हो)

$$
\mathrm{x}+0=0+\mathrm{x}=\mathrm{x} \text { (जब } \mathrm{x} \text { परिमेय संख्या हो) }
$$

परिमेय संख्या के क्षेत्र में (Q सेट में) शून्य को योगात्मक तत्समक कहते हैं ।

2.4 संख्या ' 1 ' का तात्पर्य :

अब ध्यान दो : $5 \times 1=1 \times 5$ (प्राकृत संख्या को 1 द्वारा गुणन)
$-\frac{2}{7} \times 1=1 \times-\frac{2}{7}=-\frac{2}{7}, \quad \frac{3}{8} \times 1=1 \times \frac{3}{8}=\frac{3}{8}$ (परिमेय संख्या को 1 द्वारा गुणन)
इससे तुम्हें क्या ज्ञात हुआ ?
किसी भी प्राकृत संख्या, पूर्णांक या परिमेय संख्या को 1 द्वारा गुणन करने से वही संख्या प्राप्त होती है । परिमेय संख्याओं के लिए गुणात्मक तत्समक है । अर्थात् यदि x , कोई परिमेय संख्या हो, तब $\mathrm{x} \times 1=1 \times \mathrm{x}=\mathrm{x}$ होगा ।
' 1 ' को परिमेय संख्या के क्षेत्र में (Q सेट में) गुणात्मक तत्समक कहते हैं ।

2.5 योज्य प्रतिलोम (Additive Inverse of a Number) :

निम्न स्थिति पर ध्यान दो ।
$1+(-1)=(-1)+1=0, \quad 2+(-2)=(-2)+2=0$
इससे ज्ञात हुआ कि यदि a कोई पूर्णांक है, तब $a+(-a)=(-a)+a=0$ होगा ।
यहाँ $\mathrm{a}+(-\mathrm{a})=(-\mathrm{a})+\mathrm{a}=0$ होगा ।
यहाँ $-\mathrm{a}, \mathrm{a}$ का योज्य प्रतिलोमी है । अर्थात् $\mathrm{a},-\mathrm{a}$ का योज्य प्रतिलोमी है ।
उसी प्रकार $\frac{2}{3}+\left(-\frac{2}{3}\right)=\frac{2+(-2)}{3}=0$ होगा और $-\frac{2}{3}+\frac{2}{3}=0$ होगा ।
फिर किसी परिमेय संख्या $\frac{\mathrm{a}}{\mathrm{b}}$ के लिए $\frac{\mathrm{a}}{\mathrm{b}}+\left(-\frac{\mathrm{a}}{\mathrm{b}}\right)=\left(-\frac{\mathrm{a}}{\mathrm{b}}\right)+\frac{\mathrm{a}}{\mathrm{b}}=0$ होगा ।
$-\frac{\mathrm{a}}{\mathrm{b}}$ को $\frac{\mathrm{a}}{\mathrm{b}}$ का योज्य प्रतिलोम कहते हैं । दूसरी ओर $\frac{\mathrm{a}}{\mathrm{b}}$ को $-\frac{\mathrm{a}}{\mathrm{b}}$ का योज्य प्रतिलोम कहते हैं । किसी परिमेय संख्या x का योज्य प्रतिलोम -x होगा । अर्थात् $\mathrm{x}+(-\mathrm{x})=(-\mathrm{x})+\mathrm{x}=0$ होगा ।

2.6 व्युत्क्रम या प्रतिलोम (Reciprocal or Inverse) :

किस संख्या से $\frac{8}{21}$ का गुणा करने से गुणनफल 1 होगा ? निश्चित रूप से संख्या $\frac{21}{8}$ होगी । क्योंकि $\frac{8}{21} \times \frac{21}{8}=1$ होगा । उसी प्रकार $\frac{-5}{7}$ को $\frac{7}{-5}$ से गुणा करने से गुणनफल 1 होगा । इस क्षेत्र में हम कहते हैं, $\frac{21}{8}, \frac{8}{21}$ का व्यूत्क्रम कहते हैं । एक संख्या के व्युत्क्रम को उस संख्या का गुणात्मक व्युत्क्रम कहते हैं ।
$\frac{\mathrm{c}}{\mathrm{d}}$ परिमेय संख्या, दूसरी परिमेय संख्या $\frac{\mathrm{a}}{\mathrm{b}}$ का व्युत्क्रम या गुणात्मक प्रतिलोम हो तो $\frac{\mathrm{a}}{\mathrm{b}} \times \frac{\mathrm{c}}{\mathrm{d}}=1$ होगा । जब परिमेय संख्या $\mathrm{x} \neq 0$ हो, तब x का गुणात्मक व्युत्क्रम $\frac{1}{\mathrm{x}}$, और $\frac{1}{\mathrm{x}}$ का गुणात्मक व्युत्क्रम x होगा ।
2.7 वितरकता या वंटन नियम (Distributive Law) :

तीन परिमेय संख्याएँ लेते हैं $\frac{-3}{4}, \frac{2}{3}$ और $\frac{-5}{6}$ ।
हम पाते हैं, $\frac{-3}{4} \times\left\{\frac{2}{3}+\left(\frac{-5}{6}\right)\right\}=\frac{-3}{4} \times \frac{(4)+(-5)}{6}=\frac{-3}{4} \times\left(-\frac{1}{6}\right)=\frac{3}{24}=\frac{1}{8}$
फिर $\left(\frac{-3}{4} \times \frac{2}{3}\right)+\left\{\frac{-3}{4} \times \frac{-5}{6}\right\}=-\frac{1}{2}+\frac{5}{8}=\frac{-4+5}{8}=\frac{1}{8}$
$\therefore \frac{-3}{4} \times\left(\frac{2}{3}+\frac{-5}{6}\right)=\left(-\frac{3}{4} \times \frac{2}{3}\right)+\left(\frac{-3}{4} \times \frac{-5}{6}\right)$
इस प्रकार तुम और कुछ परिमेय संख्याएँ लेकर परीक्षा करके ज्ञात करोगे कि यदि a, b और c तीन परिमेय संख्याएँ हों, तब $\mathrm{a} \times(\mathrm{b}+\mathrm{c})=(\mathrm{a} \times \mathrm{b})+(\mathrm{a} \times \mathrm{c})$ होगा । इस नियम को वितकरता या वंटन नियम कहते हैं ।

अभ्यास 2(a)

1. निम्न संख्याओं का योज्य प्रतिलोम ज्ञात करो :
(i) $\frac{2}{8}$
(ii) $\frac{-5}{9}$
(iii) $\frac{-6}{-5}$
(iv) $\frac{2}{-9}$
(v) $\frac{19}{-6}$
2. निम्न संख्याओं में गुणात्मक व्युत्क्रम ज्ञात करो :
(i) -13
(ii) $\frac{13}{19}$
(iii) $\frac{1}{5}$
(iv) $\frac{-5}{8} \times \frac{-3}{7}$
(v) $-1 \times \frac{-2}{5}$
(vi) -1
3. निम्न उक्तियों में कौन-कौन नियम प्रयुक्त हुए हैं, ज्ञात करो ।
(i) $-\frac{4}{5} \times 1=1 \times \frac{-4}{5}=\frac{-4}{5}$
(ii) $-\frac{13}{17} \times \frac{-2}{7}=\frac{-2}{7} \times-\frac{13}{17}$
(iii) $-\frac{19}{29} \times \frac{29}{-19}=1$
(iv) $\frac{1}{3} \times\left(6 \times \frac{4}{3}\right)=\left(\frac{1}{3} \times 6\right) \times \frac{4}{3}$
4. $\frac{6}{13}$ को $\frac{-7}{16}$ के व्युत्क्रम के साथ गुणा करो ।
5. क्या $\frac{8}{9}, 1 \frac{1}{8}$ का व्युत्क्रम होगा ? जब नहीं होगा, तो क्यों नहीं होगा ?
6. क्या $0.3,3 \frac{1}{4}$ का व्युत्क्रम होगा ? जब नहीं होगा, तब क्यों ?
7. उत्तर दीजिए :
(i) एक परिमेय संख्या बताओ, जिसका व्युत्क्रम नहीं है ?
(ii) एक परिमेय संख्या बताओ, जिसका व्युत्क्रम उसी संख्या के बराबर है ।
(iii) एक ऐसी परिमेय संख्या बताओ, जो उसी संख्या के योज्य प्रतिलोम के बराबर है ।
8. शून्य स्थान की पूर्ति करो :
(i) शून्य का व्युत्क्रम $\ldots \ldots$ है ।
(ii) $\ldots \ldots \ldots \ldots$ और $\ldots \ldots \ldots \ldots$ संख्याएँ अपने-अपने व्युत्क्रम हैं ।
(iii) -5 का व्युत्क्रम $\ldots \ldots \ldots$ होगा ।
(iv) $\frac{1}{\mathrm{x}},(\mathrm{x} \neq 0)$ का व्युत्क्रम $\ldots \ldots \ldots$ होगा ।
(v) किन्हीं दो परिमेय संख्याओं का गुणनफल एक $\ldots \ldots \ldots \ldots$ है
(iv) एक ऋणात्मक संख्या का व्युत्क्रम एक $\ldots \ldots \ldots$. होगी ।
2.8 विभिन्न संख्या सेटों में संबंध :

अब तक हमने जिन संख्या सेटों पर चर्चा की है वे इस प्रकार है $\mathrm{N} \subset \mathrm{N}^{*} \subset \mathrm{Z} \subset \mathrm{Q}$ ।
(i) N प्राकृत संख्या सेट
(ii) N^{*} पूर्णसंख्या सेट
(iii) Z (पूर्णांक सेट)
(iv) Q (परिमेय संख्या सेट)

2.9 संख्या-रेखा में परिमेय संख्या :

आकृति 2.2

पिछली कक्षा में हम प्राकृत संख्याओं, पूर्ण संख्याओं और पूर्णांकों को संख्या रेखा पर निरूपित करना सीख चुके हैं । अब देखेंगे कि Q सेट के उपादानों को (परिमेय संख्या) कैसे संख्या-रेखा पर बिंदुओं के रूप में निरूपित किया जाएगा ।

संख्या-रेखा पर धनात्मक दिशा के धनात्मक परिमेय संख्याओं और ऋणात्मक दिशा में ऋणात्मक परिमेय संख्याओं को बिंदुओं के रूप में निरूपित किया जाता है ।

उदाहरण 1 : संख्या-रेखा पर परिमेय संख्या $\frac{3}{4}$ के सूचक बिंदुओं को निरूपित करेंगे । $\frac{3}{4}$ का अर्थ है 4 बराबर भागों से 3 भाग । $\frac{3}{4}$ संख्या ' 0 ' से बड़ी है और 1 से छोटी है । $\frac{3}{4}$ संख्या धनात्मक है । अतएव संख्या-रेखा की धनात्मक दिशा में 0 और 1 के सूचक दोनों बिंदुओं द्वारा निरूपित रेखाखंड $\overline{\mathrm{OA}}$ पर $\frac{3}{4}$ संख्या का सूचक बिंदु स्थित है ।

$\overline{\mathrm{OA}}$ रेखाखंड को चार बराबर भागों में विभाजित करने से हमें P, Q और R तीन बिंदु प्राप्त होंगे । $\overline{\mathrm{OP}}=$ पहला भाग, $\overline{\mathrm{PQ}}=$ दूसरा भाग, $\overline{\mathrm{QR}}=$ तीसरा भाग और $\overline{\mathrm{RA}}=$ चौथा भाग है । R बिंदु द्वारा सूचित परिमेय संख्या $\frac{3}{4}$ है । आओ, संख्या रेखा पर $\frac{5}{3}$ का सूचक बिंदु निरूपित करेंगे । चूँकि $\frac{5}{3}=1 \frac{2}{3}$ है इसलिए $1<\frac{5}{3}<2$ है । अर्थात् $\frac{5}{3}$ का सूचक बिंदु 1 और 2 संख्या सूचक बिंदुओं के बीच स्थित है । अतएव $\overline{\mathrm{AB}}$ रेखाखंड को (1 और 2 के बीच) तीन बराबर भागों में बाँटनेवाले बिंदु S और T (A से B की ओर) होंगे । T बिंदु $\frac{5}{3}$ का सूचक बिंदु होगा। (आकृति २.३ देखो)

सूचना : $\frac{p}{q}$ धनात्मक परिमेय संख्या का सूचक बिंदु ज्ञात करने के लिए पहले $\frac{p}{q}$ क्रम से आने वाले किन-किन दो धनात्मक पूर्णांकों के बीच है, उसे ज्ञात करो । उन धनात्मक संख्या-द्वय को संयोग करने वाली रेखाखंड को q बराबर भाग करके p संख्यक भाग लेकर इसका प्रांत बिंदु चिह्नित करो ।

उदाहरण $2: \frac{3}{4}$ संख्या ऋणात्मक परिमेय संख्या है । इसलिए इसका सूचक बिंदु संख्या-रेखा पर ऋणात्मक दिशा (मूल बिंदु के बाईं तरफ) में स्थित है ।

आकृति 2.4
पहले धनात्मक परिमेय संख्या $\frac{3}{4}$ को चिह्नित करो । अर्थात् ‘ R ' बिंदु निरूपित करो । संख्या-रेखा पर ऋणात्मक दिशा में ' O ' बिंदु से ' OR ' की लंबाई लेने से R ' बिंदु मिलेगा । वही R ' बिंदु $-\frac{3}{4}$ का निरूपित बिंदु है ।

सूचना : $\frac{\mathrm{p}}{\mathrm{q}}$ परिमेय संख्या ऋणात्मक हो तो $-\frac{\mathrm{p}}{\mathrm{q}}=\mathrm{x}$ धमात्मक है । कहले संख्या-रेखा पर धनात्मक दिशा में x सूचक बिंदु K^{\prime} लो । ' O ' बिंदु के बाईं तरफ लंबाई लेकर K ' बिंदु को निरूपित करा । यह बिंदु ऋणात्मक परिमेय संख्या $-\mathrm{x}=\frac{\mathrm{p}}{\mathrm{q}}$ होगा ।

याद करो : जब x और y दो परिमेय संख्याएँ हैं, $\mathrm{y}>\mathrm{x}$ हो, तब y का सूचक बिंदु P, x के सूचक बिंदु Q के दाईं ओर रहेगा ।

नीचे दिए गए उदाहरणों को देखो :

आकृति 2.5

उदाहरण 1 : संख्या-रेखा पर $-\frac{17}{5}$ परिमेय संख्या को चिह्नित करो ।
हल : $-\frac{17}{5}=-3 \frac{2}{5}$
अतएव $-\frac{17}{5}$ परिमेय संख्या -3 और -4 के सूचक बिंदु S और T द्वय के बीच स्थित है ।
(a)

(b)

ST रेखाखंड को पाँच बराबर भाग करने से ' S ' से दूसरे भाग के अंतिम बिंदु L द्वारा $-\frac{17}{5}\left(=-3 \frac{2}{5}\right)$ परिमेय संख्या निरूपित होती है ।

विकल्प समाधान के लिए सूचना :

पहले $\frac{17}{5}$ के लिए संख्या-रेखा पर सूचक बिंदु ' K ' निरूपित करेंगे । उसके बाद ' O ' बिंदु के बाईं तरफ OK की लंबाई लेकर ' K ' बिंदु निरूपित किया जाएगा, जो $-\frac{17}{5}$ का सूचक बिंदु होगा ।

उदाहरण 2: $\frac{3}{5}$ और $\frac{8}{13}$, दोनों संख्याओं में से कौन-सी बड़ी है, इसे ज्ञात करने के लिए पहले दोनों संख्याओं के हर को बराबर करना चाहिए ।

5 और 13 का लघुतम समापवर्त्य $=65$ है ।
$\therefore 65 \div 3=13,65 \div 13=5$
अतएव $\frac{3}{5}=\frac{3 \times 13}{5 \times 13}=\frac{39}{65}, \frac{8}{13}=\frac{8 \times 5}{13 \times 5}=\frac{40}{65}$
(संख्याओं का समहर वाली संख्याओं में बदल दिया गया ।)
$\frac{39}{65}$ और $\frac{40}{65}$ संख्या-द्वय क्रमश: $\frac{3}{5}$ और $\frac{8}{13}$ के बराबर हैं । संख्या-द्वय को सूचित करने वाले बिंदु द्वय के बीच के रेखाखंड को 65 बराबर भाग करने से $\frac{39}{65}$ संख्या के सूचक बिंदु के दाईं ओर $\frac{40}{65}$ संख्या का सूचक बिंदु रहेगा । अतएव $\frac{40}{65}>\frac{39}{65}$ है, अर्थात् $\frac{8}{13}>\frac{3}{5}$ है ।

बि.द्र : $\frac{\mathrm{a}}{\mathrm{b}}<\frac{\mathrm{c}}{\mathrm{d}}$ होगा जब $\mathrm{ad}>\mathrm{bc}$ होगा ।
$\frac{\mathrm{a}}{\mathrm{b}}<\frac{\mathrm{c}}{\mathrm{d}}$ होगा जब $\mathrm{ad}<\mathrm{bc}$ होगा ।
उपर्युक्त तथ्य के आधार पर परिमेय संख्या-द्वय में तुलना करना संभव है । परीक्षण करके देखो ।

2.10 दो परिमेय संख्याओं के बीच की परिमेय संख्या :

हम जानते हैं कि 1 और 5 दोनों प्राकृत संख्याओं के बीच $2,3,4$ प्राकृत संख्याएँ हैं ।
7 और 9 के बीच सिर्फ एक ही प्राकृत संख्या 8 है ।
उसी प्रकार -5 और 4 के बिच स्थित पूर्णांक है- $-5,-4,-3,-2,-1,0,1,2,3$ और $-1,1$ के बिच पूर्णांक शून्य (0) है । पर -9 और -10 के बिच कोई पूर्णांक नहीं है ।

उपर्युक्त चर्चा से हमें ज्ञात हुआ कि क्रम से न आने वाली किन्हीं दो प्राकृत संख्याओं या पूर्णांकों के बीच एक निश्चित प्राकृत संख्या/पूर्णांक प्राप्त होते हैं ।

आओ, देखें परिमेय संख्याओं के एि यह सत्य है या नहीं ।
अब देखें, $\frac{3}{10}$ और $\frac{7}{10}$ के परिमेय संख्याओं के बीच कितनी परिमेय संख्याएँ रहती हैं ?

पहली स्थिति :
चूँकि $\frac{3}{10}<\frac{4}{10}<\frac{5}{10}<\frac{6}{10}<\frac{7}{10}$ है, इसलिए हम कह सकते हैं, कि $\frac{3}{10}$ और $\frac{7}{10}$ के बीच परिमेय संख्याएँ हैं$\frac{4}{10}, \frac{5}{10}$ और $\frac{6}{10}$ ।

दूसरी स्थिति :

फिर $\frac{3}{10}=\frac{30}{100}, \frac{7}{10}=\frac{70}{100}$ लिखें तो
$\frac{31}{100}, \frac{32}{100} \cdots \cdots \cdots \cdots \frac{69}{100}$ आदि परिमेय संख्याएँ $\frac{3}{10}$ और $\frac{7}{10}$ के बीच परिमेय संख्याएँ हैं ।

तीसरी स्थिति :

फिर $\frac{3}{10}=\frac{3000}{10,000}$ और $\frac{7000}{10,000}$ हो तो
$\frac{3001}{10,000}, \frac{3002}{10,000} \cdots \cdots \ldots . \frac{6998}{10,000}, \frac{6998}{10,000}$ परिमेय संख्याँ $\frac{3}{10}$ और $\frac{7}{10}$ के बीच होंगी ।
उपर्युक्त स्थितिओं पर ध्यान देने से ज्ञात होता है कि कोई भी दो परिमेय संख्याओं के बीच असंख्य परिमेय संख्याएँ प्राप्त होंगी ।

उदाहरण $3:-2$ और 0 के बीच 3 परिमेय संख्याएँ लिखो ।
हल : $-2=\frac{-20}{10}$ और $0=\frac{0}{10}$ लिखें तो $-\frac{19}{10}, \frac{-18}{10}, \ldots \ldots \ldots . \frac{-16}{10}, \frac{-15}{10} \ldots \ldots, \frac{-1}{10}$ आदि परिमेय संख्याएँ -2 और 0 के बिच रहेंगी । इनमें से किन्हि तीनों को लेकर उत्तर लिखा जा सकता है ।

उदाहरण 4 : $-\frac{5}{6}$ और $\frac{5}{8}$ के बीच किन्हीं दस परिमेय संख्याएँ लिखो ।
हल : पहले $-\frac{5}{6}$ और $\frac{5}{8}$ संख्या द्वय को बराबर हर वाली परिमेय संख्याओं में बदलो ।
जैसे : $-\frac{5}{6}=\frac{-5 \times 4}{6 \times 4}=\frac{-20}{24}$ और $\frac{5}{8}=\frac{5 \times 3}{8 \times 3}=\frac{15}{24}$ । यहाँ $\frac{-20}{24}<\frac{15}{24}(\because-20<15)$
अतएव $\frac{-19}{24}, \frac{-18}{24}, \frac{-17}{24}, \ldots \ldots \ldots . . \frac{14}{24}$ आदि $-\frac{5}{6}$ और $\frac{5}{8}$ के बीच परिमेय संख्याएँ हैं ।
हम उनमें से किन्हीं दस परिमेय संख्याओं को ले सकते हैं ।
विकल्प हल : किन्हों दो बराबर हाने वाली परिमेय संख्याओं के बीच एक परिमेय संख्या ज्ञात करने के लिए उन दोनों संख्याओं का (माध्य) औसतन निकालाना जाता है । वही माध्य आवश्यक परिमेय संख्या है ।

उदाहरण के रूप में 1 और 2 का माध्य $=\frac{1+2}{2}=\frac{3}{2}$ है । इस उदाहरण से स्पष्ट है कि किन्हीं दो परिमेय संख्याओं के बीच एक प्राकृत संख्या नहों भी रह सकती है, पर एक परिमेय संख्या का होना निश्चित है ।

उदाहरण 5: $\frac{1}{4}$ और $\frac{1}{2}$ के बीच एक परिमेय संख्या ज्ञात करो ।
हल : $\frac{1}{4}$ और $\frac{1}{2}$ का माध्य ही आवश्यक परिमेय संख्या है।

$$
=\frac{1}{2}\left(\frac{1}{4}+\frac{1}{2}\right)=\frac{1}{2}\left(\frac{1+2}{4}\right)=\frac{1}{2} \times \frac{3}{4}=\frac{3}{8}
$$

आकृति 2.7
$\therefore \frac{3}{8}$ एक परिमेय संख्या है, जो $\frac{1}{4}$ और $\frac{1}{2}$ के बिच है। आकृति (2.7) में इसे संख्या-रेखा पर दर्शाया गया है। टिप्पणी : जब a और b दो परिमेय संख्याएँ हो, तब $\frac{a+b}{2}, a$ और b के बीच परिमेय संख्या होगी ।
$a<b$ हो तो $a<\frac{a+b}{2}<b$ होगा ।
इस माध्य-प्रक्रिया का प्रयोग करके हम दो परिमेय संख्याओं के बीच अनगिनतल परिमेय संख्याएँ प्राप्त कर सकते हैं ।

उदाहरण 6: $\frac{1}{4}$ और $\frac{1}{2}$ के बिच तीन परिमेय संख्याएँ ज्ञात करो ।
हल : दी गई परिमेय संख्याओं का माध्य $=\frac{1}{2}\left(\frac{1}{4}+\frac{1}{2}\right)=\frac{1}{2} \times \frac{3}{4}=\frac{3}{8}$
$\therefore \frac{3}{8}, \frac{1}{4}$ और $\frac{1}{2}$ के बीच एक परिमेय संख्या है ।
अर्थात् $\frac{1}{4}<\frac{3}{8}<\frac{1}{2}$
अब $\frac{1}{4}$ और $\frac{3}{8}$ का माध्य $=\frac{1}{2}\left(\frac{1}{4}+\frac{3}{8}\right)=\frac{1}{2} \times \frac{5}{8}=\frac{5}{16}$
$\therefore \frac{1}{4}<\frac{5}{16}<\frac{3}{8}<\frac{1}{2}$ होगी ।
फिर $\frac{3}{8}$ और $\frac{1}{2}$ का माध्य $=\frac{1}{2}\left(\frac{3}{8}+\frac{1}{2}\right)=\frac{1}{2} \times \frac{7}{8}=\frac{7}{16}$
$\therefore \frac{1}{4}<\frac{5}{16}<\frac{3}{8}<\frac{7}{16}<\frac{1}{2}$
अतएव $\frac{5}{16}, \frac{3}{8}$ और $\frac{7}{16}$ तीन परिमेय संख्याएँ हैं जो $\frac{1}{4}$ और $\frac{1}{2}$ के मध्य हैं।
इन तीनों संख्याओं को संख्या-रेखा पर B, A, और C नाम दिए गए हैं ।

आकृति 2.8
टिप्पणी : माध्य का सूत्र प्रयोग करके हम संख्या-रेखा पर सूचित किन्हीं दो परिमेय संख्याओं के बीच अनगिनत परिमेय संख्याएँ प्राप्त कर सकते हैं ।

अभ्यास 2(b)

1. नीचे दी गई संख्याओं को संख्या-रेखा पर चिह्नित करो :
(i) $\frac{7}{4}$
(ii) $\frac{-5}{6}$
(iii) $\frac{-8}{3}$
2. $-\frac{-2}{10}, \frac{-5}{11}, \frac{-9}{11}$ को संख्या-रेखा पर दर्शाओ ।
3. (i) 2 से छोटी पाँच परिमेय संख्याएँ लिखो ।
(ii) $\frac{3}{5}$ और $\frac{3}{4}$ के बीच दस परिमेय संख्याएँ लिखो ।
4. (i) $\frac{-2}{5}$ और $\frac{1}{2}$ के बीच दस परिमेय संख्याएँ ज्ञात करो ।
(ii) -2 से बड़ी पाँच परिमेय संख्याएँ ज्ञात करो ।
5. नीचे दी गई संख्याओं के बीच पाँच-पाँच परिमेय संख्याएँ ज्ञात करो ।
(i) $\frac{2}{3}$ और $\frac{4}{5}$
(ii) $\frac{-3}{2}$ और $\frac{5}{3}$
(iii) $\frac{1}{4}$ और $\frac{1}{2}$
6. निम्न संख्या-युग्मों में से बड़ी संख्या ज्ञात करो :
(i) $\frac{2}{3}$ और $\frac{5}{7}$
(ii) $\frac{3}{4}$ और $\frac{7}{9}$
(iii) $\frac{3}{7}$ और $\frac{4}{11}$

2.11. संख्या का खेल (Playing with Numbers) :

पिछली कक्षा में प्राकृत संख्या, पूर्णांक और परिमेय संख्या के बारे में चर्चा की गई थी । उन संख्याओं के गुण-धर्म पर भी चर्चा हुई है । दशमलव पद्धति में आनेवाली सभी-संख्याओं में प्रयुक्त अंकों जैसे- $0,1,2,3,4,5,6,7,8,9$ के स्थानीय मान के अनुसार संख्या-लेखन की प्रक्रिया से तुम अवगत हो । इस अध्याय में संख्या-लेखन के साथ प्रसारित संख्या के रूप संबंधी चर्चा होगी और संख्याओं को लेकर कैसे विभिन्न प्रकार के खेल खेल जाते है, इस पर भी चर्चा की जाएगी । पहले की कक्षा में संख्या की विभाज्यता पर जो चर्चा हुई थी, उस पर अधिक चर्चा भी की जाएगी । इस अध्याय में कुछ संरचनाएँ बताई जाएँगी । इनसे छात्रों की बोधन-शक्ति को बढ़ाने का प्रयास किया गया है ।

2.12. संख्या का प्रसारित रूप (General Forms of Numbers) :

एक संख्या का प्रसारित रूप या व्यापक रूप कहने से हम उस संख्या के अंकों के स्थानीय मान के अनुसार संख्या का लेखन समझते हैं । उदाहरण के रूप में $52=5 \times 10+2 \times 1,135=1 \times 100+3 \times 10+5 \times 1$ उसी प्रकार $496=4 \times 100+9 \times 10+6 \times 1$
(496 में 4 सैकड़ा स्थान का अंक, 9 दहाई स्थान का अंक और 6 इकाई स्थान का अंक है)
मान लो ' $a b$ ' एक दो अंकीय संख्या है । इसका प्रसारित रूप है $=a \times 10+b \times 1=10 a+b$ । क्या तुम $b a$ का प्रसारित रूप बना सकोगे ? यहाँ ($a b$ को $a \times b$ के रूप में नहीं लिया गया है । उसी प्रकार तीन अंकीय संख्या $a b c$ का प्रसारित रूप होगा $100 \mathrm{a}+10 \mathrm{~b}+\mathrm{c}$
उसी प्रकार 'cba' का प्रसारित रूप होगा : $100 \mathrm{c}+10 \mathrm{~b}+\mathrm{a}$ ।

खुद करो : 1. निम्न संख्याओं के प्रसारित रूप लिखो ।
(i) 25
(ii) 73
(iii) 569
2. नीचे कुछ संख्याओं के प्रसारित रूप दर्शाए गए हैं । संख्याओं को लिखो :
(i) $10 \times 5+6$
(ii) $100 \times 7+10 \times 1+8$
(iii) $10 \mathrm{p}+10 \mathrm{q}+\mathrm{r}$

2.13. संख्याओं से खेल (Game and Numbers) :

2.13 .1 दो अंकीय संख्या को लेकर खेल :

पहला खेल :

शरत ने सुनीता से कहा, "तुम एक दो अंकीय संख्या सोचो । उसके बाद उसने निम्न प्रकार से निर्देश दिया :

1. कोई भी दो अंकीय संख्या सोचो । (मान लो संख्या 49 है ।)
2. उस संख्या में अंकों का स्थान बदल दो। (अब संख्या 94 है।)
3. स्थान-विनिमय द्वारा बनी संख्या को पहले

ली गई संख्या से जोड़ो।
(दोनों संख्याओं का योगफल 143 है ।)
4. संख्या-द्वय के योगफल को ' 11 ' से भाग देकर भागफल ज्ञात करो ।
(143 को 11 से भाग देने पर भागफल 13 हुआ ।)
5. तुम्हें ज्ञात होगा कि 11 से भाग देने पर शेष भी

नहीं बचता।
(शेष शून्य ' 0 ' है ।
सुनीता ने शरत से पूछा, "तुम्हें ज्ञात हुआ कि इस क्षेत्र में शेष कुछ नहीं बचेगा । अब आओ, इस खेल के कौशल को समझें ।

खेल से प्रयुक्त कौशल का विश्लेषण :

मान लो संख्या $a b$ है । इसका प्रसारित रूप $10 a+b$ है । संख्या के अंकों का स्थान बदल देने से नई बनी संख्या ba है । इसका प्रसारित रूप $10 \mathrm{~b}+\mathrm{a}$ है ।

दोनों संख्याओं का जोड़ $=10 a+b+10 b+a=10 a+a+10 b+b=11 b+11 b=11(a+b)$ है ।
इससे ज्ञात हुआ कि दोनों संख्याओं का जोड़ सदैव 11 का समापवर्त्य है । इसलिए संख्यां के जोड़ को 11 से भाग देने पर कोई शेष नहीं बचेगा ।

ध्यान दो : संख्या के जोड़ को 11 से भाग देने पर भागफल पहले सोची गई संख्या के दोनो अंकों के जोड़ के बराबर होगा ।

पहले के खेल से यह स्पष्ट हुआ कि भागफल 13 , पहले सोची गई संख्या 49 के अंकों का जोड़ है । खुद करो : पहले के खेल का अनुसरण करते हुए निम्न संख्याओं के क्षेत्र से शेष क्या है और भागफल क्या है, उसका परीक्षण करो :
(i) 27
(ii) 39
(iii) 64
(iv) 78

दूसरा खेल :

शरत ने फिर सुनीता से एक, दो अंकीय संख्या सोचने को कहकर उसे निम्न प्रकार से निर्देश दिया :

1. कोई भी दो अंकीय संख्या सोचो । (मान लो संख्या 29 है ।)
2. सोची गई संख्या के अंकों का स्थान बदल दो । (अब बदलने का बाद हुआ 92)
3. स्थान बदलने से उत्पत्र संख्या से पहले की संख्या को घटाओ ।
(अंतरफल धनात्मक होना चाहिए)
(संख्या दोनों का अंतरफल हुआ : 92-29=63)
4. अंतरफल को 9 से भाग दो ।
(भागफल 7 हुआ ।)
5. तुम्हें अब ज्ञात होगा कि अंतरफल को 9 से भाग देने के बाद कोई शेष नहीं रहता । (शेष शून्य ' 0 ' है ।
सुनीता ने फिर शरत से पूछा, "भाइ, तुम्हें कैसे मालूम हुआ कि इस क्षेत्र में शेष कुछ नहीं रहेगा ? अब आओ, इस खेल में प्रयुक्त कौशल को समझेंगे ।

मान लो संख्या $a b$ है । इसका प्रसारित रूप $10 a+b$ है । स्थान बदलने से संख्या $b a$ हुई । इसका प्रसारित रूप है $10 \mathrm{~b}+\mathrm{a}$ है ।

दोनों संख्याओं का अंतरफल $=10 \mathrm{~b}+\mathrm{a}-(10 \mathrm{a}+\mathrm{b})(\mathrm{a}<\mathrm{b})$

$$
\begin{aligned}
& =10 b+a-10 a-b \\
& =10 b-b+a-10 a \\
& =9 b-9 a=9(b-a)
\end{aligned}
$$

जब $a>b$ हो तो अंतरफल $9(a-b)$ होगा ।
विश्लेषण : $(10 a+b)-(10 b+a)$

$$
\begin{aligned}
& =10 a+b-10 b-a \\
& =10 a-a-+b-10 b \\
& =9 a-9 b=9(a-b) \text { है । }
\end{aligned}
$$

इससे स्पष्ट हुआ कि संख्या का अंतरफल सदैव ' 9 ' का समापवर्त्य है । अतएव संख्याद्वय के अंतरफल को 9 से भाग देने पर कोई शेष नहीं रहेगा ।
ध्यान दो : संख्या-द्वूय के अंतरफल को 9 से भाग देने पर मिला भागफल, पहले सोची गई संख्या के अंकों के अंतरफल के बराबर होगा ।
(i) $\mathrm{a}<\mathrm{b}$ हो तो $\mathrm{b}-\mathrm{a}$ और (ii) $\mathrm{a}>\mathrm{b}$ हो तो $\mathrm{a}-\mathrm{b}$ होगा । दूसरे खेल से स्पष्ट होगा कि भाग देने के बाद मिला भागफल ' 7 ' पहले से सोची गई संख्या के दोनों अंकों के अंतरफल के बराबर है ।

खुद करो : दूसरे खेल का अनुसरण करके निम्न संख्याओं के क्षेत्र मे शेष और भागफल क्या आते हैं, परीक्षण करके देखो ।
(i) 17 ,
(ii) 21 ,
(iii) 96 ,
(iv) 37

2.13.2 तीन अंकीय संख्या का खेल :

तीसरा खेल : अब सुनीता की बारी आई । सुनीता ने शरत से कहा, "तुम एक, तीन अंकीय संख्या सोचो । इसके बाद निर्देशानुसार काम करने को कहा।

निर्देश ऐसे है :

1. एक तीन अंकीय संख्या सोचो ।
2. संख्या के अंक बदलकर लिखो ।
3. बड़ी संख्या से छोटी संख्या का व्यवकलन करो ।
4. वियोगफल को ' 99 ' से भाग देकर भागफल ज्ञात करो ।

निर्देश के अनुसार शरत द्वारा संपन्न कार्य :
(i) 349
(ii) 943
(iii) 594
$(943-349=594)$
(iv) भागफल $(594 \div 99=6)$
(शेष नहीं रहता है ।)

खेल में प्रयुक्त कौशल का विश्लषण :

मान लो संख्या $a b c$ है । इसका प्रसारित रूप $100 a+10 b+c(a>c)$
संख्या को उलटे क्रम सह लिखने से यह $c b a$ होगी। $c b a$ का प्रसारित रूप है : $100 c+10 b+a$
बड़ी संख्या से छोटी संख्या का व्यवकलन करने से होगा :

$$
\begin{aligned}
& (100 a+10 b+c)-(100 c+10 b+a) \\
= & 100 a+10 b+c-100 c-10 b-a) \\
= & 100 a-a-100 c-c \\
= & 99 a-99 c=99(a-c)
\end{aligned}
$$

जब $c>a$ न हो तो वियोगफल $99(c-a)$ होगा ।
इससे स्पष्ट हुआ कि संख्या-द्वय का वियोगफल 99 का समापवर्त्य होगा । इसलिए संख्या-द्वय के वियोगफल को 99 से भाग देने पर शेष नहीं रहेगा ।

ध्यान दो : संख्या-द्वूय के वियोगफल को 99 से भाग देने पर मिला भागफल सैकड़े और इकाई स्थान के दोनों अंकों के अंतरफल के बराबर होगा ।

इस खेल से स्पष्ट है कि भाग देने पर जो ' 6 ' भागफल मिला, वह पहले सोची गई तीन अंकीय संख्या ' 349 ' की इकाई और सैकड़े स्थानीय दोनों अंकों के अंतरफल के बराबर है ।

खुद करो : तीसरे खेल का अनुसरण करके निम्न संख्याओं के क्षेत्र में शेष और भागफल कितने आते हैं, उनका परीक्षण करके देखो :
(i) 132 ,
(ii) 469 ,
(iii) 543,
(iv) 901

चौथा खेल : अब शरत की बारी आई । शरत ने सुनीता से तीन अंकीय संख्या सोचने को कहा । निर्देशानुसार कार्य करने को कहा ।

निर्देश ऐसे है :
(i) तीन भिन्न भिन्न अंक सोचने को कहा ।

निर्देशानुसार सुनीता के कार्य :
(i) 2, 3 और 7
(ii) इन तिन अंकों से तीन भिन्न-भिन्न संख्या बनाने को कहा । बनी संख्या से कोइ भी अंक एक ही बार प्रयुक्त होगा । जैसे : अंक त्र्य यदि
a, b, c है, तो संख्या होगी $-a b c, c a b, b c a$
(ii) $237,723,372$
(iii) निनों संख्याओं का जोड़ निकालो ।
(iii) $237+723+372=1332$
(iv) जोड़ को ' 27 ' से भाग दो ।
(iv) $1332 \div 27=36$
(v) अब कोई शेष नहीं रहेगा ।
(v) शेष नहीं रहता है ।

खेल में प्रयुक्त कौशल का विश्लषण :

$a b c$ का प्रसारित रूप है : $100 a+10 b+c$
cab का प्रसारित रूप है : $100 \mathrm{c}+10 \mathrm{a}+\mathrm{b}$
bca का प्रसारित रूप है : $100 \mathrm{~b}+10 \mathrm{c}+\mathrm{a}$
संख्या त्र्य का जोड़ $=(100 a+10 b+c)+(100 c+10 b+a)+(100 b+10 c+a)$

$$
\begin{aligned}
& =(100 a+10 a+a)+(100 b+10 b+b)+(100 c+10 c+c) \\
& =111 a+111 b+111 c=111(a+b+c)=37 \times 3(a+b+c)
\end{aligned}
$$

इससे स्पष्ट हुआ कि संख्या-त्र्य का योगफल सदैव 37 का एक समापवर्त्य होगा । इसलिए संख्या-त्र्य के योगफल को 37 से भाग देने पर शेष नहीं रहेगा ।

ध्यान दो : संख्या-त्र्य के योगफल को 37 से भाग देने पर भागफल पहले सोची गई संख्या के अंक-त्र्य के योगफल के बराबर होगा ।

इस खेल से स्पष्ट है कि भाग देने से भागफल 36 होगा । यह संख्या के तीनों अंकों के योगफल का तीन गुने के बराबर होगा ।

दी गई संरचना को देखो और याद करो : $\quad 3 \times 37=111$

$$
6 \times 37=222
$$

$$
9 \times 37=333
$$

$$
\begin{aligned}
& 12 \times 37=444 \\
& 15 \times 37=555 \\
& 18 \times 37=666
\end{aligned}
$$

खुद करो

1. चौथे खेल का अनुसरण करके निम्न अंकों के क्षेत्र में शेष और भागफल कितने आते हैं, परीक्षण करके देखो :
(i) $4,1,7$
(ii) $6,3,2$
(iii) $1,2,3$
(iv) $9,3,7$
2. निम्न संरचनाओं को देखकर कम-से-कम परवर्ती दो पक्तियाँ लिखो :
(a)

$$
\begin{aligned}
7 \times 9 & =63 \\
77 \times 99 & =7623 \\
777 \times 999 & =776223 \\
7777 \times 9999 & =77762223
\end{aligned}
$$

(b)
$2178 \times 4=8712$
$21978 \times 4=87912$
$219978 \times 4=879912$
$2199978 \times 4=8799912$

2.14 विभाज्यता का परीक्षण (Test of Divisibility) :

पिछली कक्षा में $2,3,4,5,6,7,8,9,10,11$ आदि प्राकृत संख्याओं के लिए विभाज्यता का परीक्षण कैसे किया जाता है, उन्हें तुमने पढ़ा है । अर्थात् तुम परीक्षण करके जान चुके हो कि कोई भी संख्या उपर्युक्त संख्या/संख्याओं से विभाज्य होगी या नहीं । यहाँ उसके बारे में और अधिक चर्चा करेंगे ।

2.14.1 संख्या 10 द्वारा विभाज्यता (Divisibility by 10) :

कोई संख्या 10 का समापवर्त्य हो तो संख्या 10 से विभाज्य होगा । निम्न संख्याओं को देखो ।
$10,20,30,40,50$, \qquad जैसी संख्याएँ 10 के समापवर्त्य हैं । इनके इकाई के स्थान पर ' 0 ' है । इससे स्पष्ट हुआ कि किसी संख्या के इकाई के स्थान पर ' 0 ' है तो वह संख्या 10 का समापवर्त्य होगी तथा 10 से विभाज्य होगी । अब उस विभाज्यता का नियम समझने को कोशिश करेंगे ।

मान लो ${ }^{\prime}$ \qquad .cba' एक संख्या है ।
इसका प्रसारित रूप है- \qquad $+100 c+10 b+a$
यहाँ a इकाई के स्थान क अंक है । b दहाई के स्तान का और c सैकड़े के स्थान का अंक आदि है ।
10,100 आदि 10 से बिभाज्य हैं । अतएव $10 b$ और 100 c भी 10 से विभाज्य होंगी । पर ' a ' 10 से विभाज्य होना चाहिए । इसलिए $\mathrm{a}=0$ होगा चाहिए । अर्थात् इकाई के स्थान का अंक a यदि 0 होगी, तब दी गई संख्या 10 से विभाज्य होगी । अत: दस से विभाज्यता का नियम है :

किसी संख्या का इकाई के स्थान का अंक ' 0 ' हो, तो वह संख्या 10 विभाज्य होगी ।
खुद करो : नीचे की संरचना पर ध्यान देते हुए परवर्ती दो पंक्तियाँ लिखो ।
(a)
$10=10^{1}$
(b)

$$
\begin{gathered}
\frac{1}{10}=10^{-1}=0.1 \\
\frac{1}{10} \times \frac{1}{10}=10^{-2}=0.01 \\
\frac{1}{10} \times \frac{1}{10} \times \frac{1}{10}=10^{-3}=\mathbf{0 . 0 0 1} \\
\frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10}=10^{-4}=\mathbf{0 . 0 0 1}
\end{gathered}
$$

2.14.2 संख्या 5 से विभाज्यता (Divisibility by 5) :

5 के समापर्त्या पर ध्यान दो । वे हैं :- $5,10,15,20,25,30,35,40,45,50,55$, उन पर ध्यान देने से ज्ञात होगा कि इनके इकाई के स्थान पर 5 या 0 है । इनके अलावा और कोई दूसरा अंक नहीं आया है ।

यहाँ विभाज्यता का नियम होगा :
किसी संख्या का इकाई के स्थान का अंक 0 या 5 है, तो वह संख्या 5 से विभाज्य होगी ।
अब इस विभाज्यता का नियम समझेंगे । पहले की तरहcba संख्या लो । इसका प्रसारित रूप है100c + $10 \mathrm{~b}+\mathrm{a}$ । यहाँ $100 \mathrm{c}, 10 \mathrm{~b}$ आदि 5 से विभाज्य हैं । क्यों कि 100,105 के समापवर्त्य हैं । उपर्युक्त संख्या 5 से विभाज्य होने के लिए ' a ' भी 5 से विभाज्य होना चाहिए। अतएव a का मान 0 या 5 होना चाहिए।

2.14 .3 संख्या 2 से विभाज्यता (Divisibility by 2) :

' 2 ' के समापवर्त्यों पर ध्यान दो । (सम संख्या)
किसी संख्या का इकाई का अंक यदि $0,2,4,6$ या 8 हो, तब वह संख्या ' 2 ' से विभाज्य होगा । दूसरे प्रकार से कह सकते हैं, सम संख्याएँ 2 से विभाज्य होगी ।

अब उस विभाज्यता के नियम का परीक्षण करेंगे । पहले की तरह \qquad cba एक संख्या लो । इसका प्रसारित रूप है \qquad $+100 \mathrm{c}+10 \mathrm{~b}+\mathrm{a}$ । पहले के दो पद 100 c और 10 b प्रत्येक 2 से विभाज्य होंगी । यहाँ दी गई संख्या 2 से विभाज्य होगी । यह संभव होगा यदि $a=0,2,4,6$ या 8 होगा ।

2.14.4 संख्या 9 और 3 से विभाज्यता (Divisibility by 9 and 3) :

10,5 , और 2 विभाज्यता का परीक्षण सिर्फ संख्या की इकाई के स्थान के अंक पर निर्भर रहता है । लेकिन 9 या 3 से विभाज्यता का परीक्षण करने के लिए संख्या के प्रत्येक अंक की आवश्यकता है। 9 और 3 की विभाज्यता के नियम को याद करो :

विभाज्यता का नियम है :
(1) किसी संख्या के अंकों का योगफल 9 से विभाज्य होने पर वह संख्या 9 से विभाज्य होगी ।
(2) किसी संख्या के अंको का योगफल 3 से विभाज्य होने पर वह संख्या 3 से विभाज्य होगी । हम अब इस सूत्र के समझने की कोशिश करेंगे ।

विश्लेषण : मान लो संख्या cba है ।
cba का प्रसारित रूप है $-100 \mathrm{c}+10 \mathrm{~b}+\mathrm{a}$
$=(99 \mathrm{c}+\mathrm{c})(9 \mathrm{~b}+\mathrm{b})+\mathrm{a}=99 \mathrm{c}+9 \mathrm{~b}+(\mathrm{a}+\mathrm{b}+\mathrm{c})=9(11 \mathrm{c}+\mathrm{b})+(\mathrm{a}+\mathrm{b}+\mathrm{c})$

यहाँ cba के प्रसारित रूप से बना $9(11 \mathrm{c}+\mathrm{b})$ पद 9 से विभाज्य होगा । जब $(a+b+c)$ अर्थात् संख्या के तीनों अंको का योगफल a से (या 3 से) विभाज्य होगा, तब "cba" संख्या 9 (या 3 से) से विभाज्य होगी ।

अब हम एक उदाहरण के माध्यम से उस विभाज्यता के नियम को समझने की कोशिश करेंगे ।
उदाहरण 7 : ' 3573 ' संख्या 9 से विभाज्य है या नहीं, उसका परीक्षण करेंगे ।
हल : 3573 का प्रसारित रूप है $=3 \times 1000+5 \times 100 \times 7 \times 10+3 \times 1$

$$
\begin{aligned}
& =3(999+1)+5(99+1)+7(9+1)+3 \times 1 \\
& =3 \times 999+5 \times 99+7 \times 9+(3+5+7+3) \\
& =9(3 \times 111)+(5 \times 11)+7+(3+5+7+3)
\end{aligned}
$$

यहाँ स्पष्ट हो जाता है कि संख्या के अंकों का योगफल $(3+5+7+3)=18$ है । यह 9 या 3 से विभाज्य है। अर्थात् 3573 संख्या 9 र 3 से विभाज्य होगी ।
उदाहरण 8:3576 संख्या की 9 या 3 से विभाज्यता का परीक्षण करो ।
हल : 3576 का प्रसारित रूप है $=3 \times 1000+5 \times 100 \times 7 \times 10+6 \times 1$

$$
\begin{aligned}
& =3(999+1)+5(99+1)+7(9+1)+6 \\
& =3 \times 999+5 \times 99+7 \times 9+(3+5+7+6)
\end{aligned}
$$

यहाँ 3576 संख्या के अंकों का योगफल है $3+5+7+6=21$ । 21,9 से विभाज्य नहीं है, पर 3 से विभाज्य है । अतएव 3576 संख्या केवल 3 से विभाज्य होगी ।
टिप्पणी : 9 से विभाज्य संख्या भी 3 से विभाज्य है । क्योंकि 9,3 का समापवर्त्य है । लेकिन ' 3 ' से विभाज्य संख्या 9 से विभाज्य नहीं भी हो सकती है ।
खुद करो :

1. 9 के विभाज्यता-नियम के आधार पर निम्न संख्याएँ 9 से विभाज्य हैं या नहीं, परीक्षण करो ।
(i) 108
(ii) 616
(iii) 294
(iv) 432
(v) 927
2. 3 के विभाज्यता-नियम के आधार कर निम्न संख्याएँ 3 से विभाज्य हैं या नहीं, परीक्षण करो ।
(i) 117
(ii) 213
(iii) 1735
(iv) 52722
(v) 317424 (vi) 63171423

2.14 .5 संख्या 11 से विभाज्यता (Divisibility by 11) :

' 11 ' से विभाज्यता का नियम याद करो ।
विभाज्यता का नियम है :
किसी संख्या के सम स्थान के अंकों के योगफल और विषम स्थान के अंको के योगफल का अंतर यदि 11 से विभाज्य है, तो वह संख्या 11 विभाज्य होगी ।

अब इस नियम पर चर्चा करेंगे ।
(i) एक तीन अंकीय संख्या cba लें ।

इसका प्रसारित रूप है $=100 c+10 b+a$

$$
\begin{aligned}
& =99 c+c+11 b+b+a \\
& =99 c+11 b+(c-b+a \\
& =11(9 c+b)+(a+c-b)
\end{aligned}
$$

यदि cba संख्या 11 से विभाज्य होगी तब $(\mathrm{a}+\mathrm{c}-\mathrm{b})$ के संबंध में क्या कहा जा सकता है, सोचो ।
(ii) मान लो dcba एक चार अंकीय संख्या है ।
dcba का प्रसारित रूप है $=1000 \mathrm{~d}+100 \mathrm{c}+10 \mathrm{~b}$ a

$$
\begin{aligned}
& =1001 \mathrm{~d}-\mathrm{d}+99 \mathrm{c}+\mathrm{c}+11 \mathrm{~b}-\mathrm{b}+\mathrm{a} \\
& =1001 \mathrm{~d}+99 \mathrm{c}+11 \mathrm{~b}+(\mathrm{a}+\mathrm{c})-(\mathrm{b}+\mathrm{d}) \\
& =11(91 \mathrm{~d}+\mathrm{ac}+\mathrm{b}+\{(\mathrm{a}+\mathrm{c})-(\mathrm{b}+\mathrm{d})\}
\end{aligned}
$$

यदि उपर्युक्त संख्या 11 से विभाज्य होगी, तब $(a+c)-(b+d)$ के संबंध में क्या कहा जा सकता हहै, सोचो । अब (i) और (ii) के विश्लेषण से हमें ज्ञात होगा :

किसी संख्या के सम स्थान के अंकों के योगफल और विषम स्थान के अंको के योगफल का अंतर 11 से विभाज्य हो, तो वह संख्या 11 से विभाज्य होगी ।

उदाहरण 9:1309 संख्या 11 से विभाज्य है या नहीं, उसका परीक्षण करो ।
हल : 1309 संख्या के सम स्थान के अंको का योगफल (बाई ओर से दूसरे और चौथ स्थान के अंकों का योगफल $=3+9=12$

विषम स्थान के अंकों का योगफल (बाई ओर से पहले ओर तीसरे स्थान के अंकों का योगफल $=1+0=1$ दो योगफल का अंतर $=12-1=11$ (यह 11 से विभाज्य है)
$\therefore 11$ से विभाज्य होगी ।
उदाहरण $10: 3521745238$ संख्या 11 से विभाज्य है या नहीं, उसका परीक्षण करो ।
हल : 3521745238 संख्या के सम स्थान के अंको का योगफल $=5+1+4+2+8=20$
विषम स्थान के अंकों का योगफल $=3+2+7+5+3=20$
दो योगफल का अंतर $=20-20=0$
यह संख्या 11 से विभाज्य होगी ।

खुद करो :

1. 11 से विभाज्यता-नियम के आधार पर निम्न संख्याओं की 11 से विभाज्यता का परीक्षण करो ।
(i) 1331
(ii) 14641
(iii) 132055
(iv) 2354012
(v) 2573439
2. निम्न संरचनाओं को देखकर परवर्ती पक्तियाँ लिखो :

$11=11$	$1+1=2^{1}$
$11 \times 11=121$	$1+2+1=2^{2}$
$11 \times 11 \times 11=1331$	$1+3+3+1=2^{3}$

टिप्पणी : (i) उत्पन्न संख्याओं को उलटा लिखने पर भी संख्याएँ अपरिवर्तित रहती हैं ।
(ii) गुणनफल के अंकों का योगफल क्रमशः $2^{1}, 2^{2}, 2^{3}, 2^{4}$, आदि होगा ।

अभ्यास 2(c)

1. निम्न संरचनाओं को देखकर परवर्ती दो पंक्तियाँ लिखो :
(a)

$$
\begin{aligned}
1 \times 9+1 & =10 \\
12 \times 9+2 & =110 \\
123 \times 9+3 & =1110
\end{aligned}
$$

(b)

$$
1 \times 8+1=9
$$

$$
12 \times 8+2=98
$$

$$
123 \times 8+3=987
$$

(c) $\quad 6 \times 11=66$

$$
89 \times 101=8989
$$

$$
706 \times 1001=706706
$$

(d)

$$
1+2=3
$$

$$
4+5+6=7+8
$$

$$
9+10+11+12=13+14+15
$$

(e)
1
(f)

$$
\begin{aligned}
& 2^{2}-1^{2}=2+1=3 \\
& 3^{2}-2^{2}=3+2=5 \\
& 4^{2}-3^{2}=4+3=7 \\
& 5^{2}-4^{2}=5+4=9 \\
& 6^{2}-5^{2}=6+5=11
\end{aligned}
$$

2. नीचे दिए गए खाली वर्गों को दो अंकीय अभाज्य संख्याओं से भरो, जैसे किसी भी तरफ से (लंबवत् या ऊर्ध्वाधर (आधार समांतर) जोड़ने पर योगफल
(i) 123 होगा (आकृति 1) और
(ii) 161 होगा (आकृति-२)

आकृति 1

आकृति 2
3. निम्न प्रश्नों के प्रत्येक अक्षर के लिए एक-एक अंक (0 से 9 तक) चुनो, ऐसे दी गई शर्तों की सत्यता निरूपित हो सके । किस अक्षर के लिए कौन-सा अंक प्रयुक्त किया गया, उसे लिखो :
(i) $x y=y x$
(ii) $\frac{1}{\mathrm{x}}+\frac{1}{\mathrm{y}}+\frac{1}{\mathrm{z}}=1$
(iii) $\mathrm{A} \times \mathrm{C} \times \mathrm{AC}=\mathrm{CCC}$
(iv) $\mathrm{ABCD} \times 9=\mathrm{DCBA}$
(v) $\mathrm{AB}+\mathrm{BA}=\mathrm{P}(\mathrm{A}+\mathrm{B})$
(vi) $\mathrm{AB}-\mathrm{BA}=\mathrm{P}(\mathrm{A}-\mathrm{B})(\mathrm{A}>\mathrm{B})$
(vii) $\mathrm{ABC}+\mathrm{BCA}+\mathrm{CAB}=111(\mathrm{~A}+\mathrm{B}+\mathrm{C})$
(viii) $\mathrm{ABC}-\mathrm{CBA}=99(\mathrm{~A}-\mathrm{C})$

वि.द्र : ऊपर के प्रश्नों का हल करने के लिए कोई निश्चित सूत्र नहीं है । विद्यार्थि अपनी बोधशक्ति का प्रयोग करके हल निकालें ।

4 (a) निम्नलिखित कौन-कौन सी संख्याएँ 2 से विभाज्य है ?
$24,127,210,86,95,437,251$
(b) निम्नलिखित कौन-कौन सी संख्याएँ 5 से विभाज्य है, कौन-कौन सी संख्याएँ दोनों 5 और 2 से विभाज्य हैं ? $105,214,420,235,930,75$
(c) निम्नलिखित कौन-कौन सी संख्याएँ 3 से विभाज्य है, कौन-कौन सी संख्याएँ दोनों 2 और 3 से विभाज्य हैं ? $78,403,504,917,235,216,774,804$
(d) निम्नलिखित कौन-कौन सी संख्याएँ 3 से विभाज्य है, पर 9 से विभाज्य नहीं हैं ? 702, 501, 213, 102, 675, 462
5. तारों से चिह्नित खाली स्थानों को किस क्षुद्रतम अंकों से भरने से संख्या (i) 3 से, (ii) 9 से विभाज्य होंगी ?
(a) $7 * 5$,
(b) $3 * 2$,
(c) 17 *,
(d) $14 *$,
(e) $2 * 2$
6. निम्न उक्तिओं में से सही उत्तर चुनो :
(i) 9 से विभाज्य संख्या 3 से भी विभाज्य होगी ।
(ii) 3 से विभाज्य संख्या 9 से भी विभाज्य होगी ।
(iii) 3 से विभाज्य संख्या 6 से भी विभाज्य होगी ।
(iv) 10 से विभाज्य संख्या 5 से भी विभाज्य होगी।
(v) 6 से विभाज्य संख्या 2 और 3 से भी विभाज्य होगी ।
7. निम्न उक्तिओं में से सही उत्तर चुनकर लिखो :
(i) 710,10 से विभाज्य पर 5 से नहीं ।
(ii) 105,3 और 5 दोनों से विभाज्य है ।
(iii) 897,3 से विभाज्य नहीं है, पर 9 से विभाज्य है ।
(iv) 14641 संख्या 11 से विभाज्य है ।
(v) 432 संख्या 3,6 और 9 से विभाज्य है ।

बीजीय व्यंजक और सर्वसमिकाएँ (ALGEBRIC EXPRESSION AND INDENTITIES)

3.1. भूमिका (Introductin) :

पिछली कक्षा में तुमने बीजीय व्यंजकों के बारे में जानकारी हासिल की है। हम गणितीय संक्रियाओं $(+,-, \times$, एवं -$)$ का प्रयोग भी जान चुके हैं। बीजीय व्यंजकों में कुछ अक्षर-संकेतों (Literals) का प्रयोग होता है। इन्हें चर (Variables) कहा जाता है । तुम्हें यह भी जानकारी मिली है कि केवल एक मात्र चर वाले बीजीय व्यंजकों में विभिन्न संकियाएँ कैसे संयोजित होते हैं। यह व्यंजक कैसे पलिनोमियल से भिन्न है उस पर इस अध्याय में चर्चा की जाएगी। पलिनोमिलय के क्षेत्र में कैसे विभिन्न संक्रियाएँ संगठित होती है, उस पर भी चर्चा की जाएगी ।

3.2 पलिनोमिलय (Polynomial) :

अक्षर-संकेतों (जैसे - $\mathrm{x}, \mathrm{y}, \mathrm{z}, \ldots \ldots . ., \mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots . \ldots .$. आदि) से किसी भी व्यंजक के माध्यम के बीजीय तत्वों को अभिव्यक्त किया जाता है ।

उदाहरण-स्वरूप x और y दो प्राकृत संख्याएँ हों तो $x+y$ भी एक प्राकृत संख्या है। यह एक बीजीय तत्व है। $x+y$ ' एक बीजीय व्यंजक है । x और y प्राकृत संख्याओं के लिए प्रयुक्त अक्षर संकेत हैं । तुमने सातवीं कक्षा में जिन बीजीय व्यंजकों के बारे में पढ़ा है, उनके कुछ उदाहरण हैं :
(i) 3 x , (ii) $2 \mathrm{x}+3$, (iii) $5 \mathrm{x}^{2}-2 \mathrm{x}-3$, (iv) $\mathrm{x}^{4}+3 \mathrm{x}^{2}-9 \mathrm{x}+5$

यहाँ ध्यान दो : (a) यहाँ दिए गए बीजीय व्यंजकों में केवल एक-चर ' x ' है । (b) व्यंजकों में चर ' x ' का घात पूर्ण संख्या होता है । किसी भी स्थिति में यह ऋणात्मक नहीं है । $(0,1,2,3 \ldots$.$) आदि को बिना ऋणात्मक पूर्ण संख्या कहते$ हैं । (c) (i), (ii), (iii) और (iv) में दिए गए व्यंजकों की पद-संख्या क्रमश: $1,2,3$ और 4 हैं । वे क्रमशः एक पद, द्विपद, त्रिपद और चतुर्पद वाले बहु पद व्यंजक हैं ।

अब देखें, निम्न व्यंजक, ऊपर उल्लिखित व्यंजकों से कैसे भिन्न हैं ।
(i) $6+2 \mathrm{x}^{-2}+\mathrm{x}^{2}$, (ii) $\mathrm{x}+\mathrm{x}^{-1}$, (iii) $2 \mathrm{x}^{2}+\mathrm{x}^{-\frac{1}{3}}+4$

यहाँ ध्यान दो, प्रत्येक व्यंजक में कुछ ऋणात्मक अथवा भिन्न घात वाले पद हैं । जैसे : (i) में बीच का $2 \mathrm{x}^{-2}$ है, (ii) में दूसरा पद x^{-1} है, (3) बीच का पद $\mathrm{x}^{-\frac{1}{3}}$ है ।

लेकिन (i), (ii), (iii) और (iv) व्यंजकों में (बहुबार, चर x का घात ऋणात्मक या भिन्न नहीं है । तब हम (1), (2) और (3) व्यंजकों के (i), (ii), (iii) और (iv) व्यंजकों से कैसे भिन्न विधि में व्यक्त कर सकेंगे ?

यहाँ याद रखना चाहिए कि (i), (ii), (iii) और (iv) तथा (1), (2) और (3) प्रत्येक एक-एक बीजीय व्यंजक है । लेकिन इन्हें अलग-अलग व्यक्त करने के लिए (i), (ii), (iii) और (iv) ब्यंजकों को अलग नाम देंगे जिसे पलिनोमियल (Polynomial) कहते हैं ।

पलिनोमियल की परिभाषा : जिन बीजीय व्यंजकों सें चर का घात बिना-ऋणात्मक पूर्ण संख्या है, उन्हें पलिनोमियल कहते हैं ।

ध्यान दो, निम्न उदाहरणों में एक मात्र चर x^{4} है । इन्हें x में एक-एक पलिनोमियल कहते हैं । (i) $3 x$, (ii) $2 x+3$, (iii) $5 \mathrm{x}^{2}-2 \mathrm{x}-3$, (iv) $\mathrm{x}^{4}+3 \mathrm{x}^{2}-9 \mathrm{x}+5$

वि.द्र. : इस अध्याय में सिर्फ एक चरवाले पलिनोमियल की चर्चा की जाएगी ।

3.2.1 पलिनोमियल का घात :

पलिनोमियल में आए चर (x) के अधिकतम घात को दिए गए पलिनोमियल का घात कहते हैं ।
ध्यान देना चाहिए कि पलिनोमियल के अधिकतम घातवाले पद का संख्यात्मक गुणांक शून्येतर होना आवश्यक है । यहाँ (i) और (ii) में पलिनोमियल का घात 1 है, जबकि (iii) और (iv) में पलिनोमियल के घात क्रमशः 2 और 4 है ।

खुद करो : (1) $x+1$ एकघातीय पलिनोमियल है । इसे $0 \cdot x^{2}+x+1$ के रूप में लिखने से इसका घात क्या होगा ?
(2) $\mathrm{x}^{2}+\mathrm{x}+1$ को $0 \cdot \mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1$ के रूप में लिखने से यह क्या त्रिघाती पलिनोमियल होगा ?

निम्न उदाहरण पर ध्यान दो :
उदाहरण 1 : निम्न पलिनोमियल के घात ज्ञात करो :
(i) $5 x^{2}+13 a-9$,
(ii) $\mathrm{y}^{3}+17 \mathrm{y}$
(iii) $2 p+3$
(iv) -5

हल : (i) $5 \mathrm{x}^{2}+13 \mathrm{a}-9$ में घात 2 है । इसलिए इसे द्विघाती पलिनोमियल कहते हैं ।
(ii) $\mathrm{y}^{3}+17 \mathrm{y}$ में घात 3 है । इसे त्रिघाती पलिनोमियल कहते हैं ।
(iii) $2 p+3$ में घात 1 है। यह एकघाती पलिनोमियल है। (First degree अथवा Linear Polynomial) कहते हैं ।
(iv) -5 एक पलिनोमियल है । इसे $-5 \mathrm{x}^{0}$ के रूप में व्यक्त किया जा सकेगा । अतएव -5 एक शून्यघातीय पिलनोमियल है ।

टिप्पणी : (1) कोई शून्येतर परिमेय संख्या ' 0 ' घातीय पलिनोमियल है । इसे ध्रुव पलिनोमियल (Constant Polynomial) कहते हैं।
(2) संक्षेप में द्विघाती पलिनोमियल को Quadratic polynomial, त्रिघाती पलिनोमियल को Cubic Polynomial और चतुर्घाती पलिनोमियल को Biquadratic अथवा Quartic Polynomial कहते हैं ।

3.2.2 पलिनोमियल के पद :

पलिनोमियल के प्रत्येकपद को मनोमियल (Monomial) कहते हैं । पलिनोमियल यदि एकपदी है तो उसे मनोमियल कहते हैं। पलिनोमियल दो मनोमियल से बना है तो उसे द्विपदी पलिनोमियल (Binomial) कहते हैं। तीन से अधिक मनोमियल रहने पर केवल पलिनोमियल कहते हैं।

3.2.3 मनोमियल का संख्यात्मक गुणांक :

$x^{2}-2 x-3$ एक पलिनोमियल है । इसका प्रत्येक पद एक-एक मनोमियल है । पद की कुछ गुणांकों/गुणन खंडों (Factor) का गुणनफल हो सकता है । इसे संख्यात्मक गुणन खंड कहते हैं । यहाँ $\mathrm{x}^{2}=1 \times \mathrm{x}^{2}$ और $-2 \mathrm{x}=-$ $2 \times x$ हैं । अतएव x^{2} का संख्यात्मक गुणांक 1 है और $-2 x$ का संख्यात्मक गुणांक -2 है । इस पलिनोमियल का तीसरा पद है -3 ।
$-3=-3 \times \mathrm{x}^{0}$ है । अतएव $-3, \mathrm{x}^{0}$ का संख्यात्मक गुणांक है। -3 को एक ध्रुवक भी कहा जाता है ।

खुद करो :

1. $2 x-5$ और $3 x^{2}-2 x+7$ पलिनोमियल के पदों के संख्यात्मक गुणांको को ज्ञात करो ।
2. दो दो द्विपदी और त्रिपदी पलिनोमियल लेकर उनकी पद-संख्या, घात और संख्यात्मक गुणांक ज्ञात करो ।

3.2.4 समान पद (Like monomials) :

एक चर द्वारा गठित दो या दो से अधिक मनोमियल समान घातवालें हैं । तो उन्हें समान मनोमियल या समान पद कहते हैं । उदाहरण स्वरूप : $2 \mathrm{x}, 9 \mathrm{x},-5 \mathrm{x}$ आदि समान पद हैं ।

उसी प्रकार $-3 \mathrm{x}^{2}, \mathrm{x}^{2}, 7 \mathrm{x}^{2}$ भी समान पद हैं । पर $2 \mathrm{x}, 3 \mathrm{y}, 5 \mathrm{x}$ आदि असमान पद हैं ।
टिप्पणी : 1. हमारी चर्चा केवल एक चरवाले पलिनोमियल तक सीमित रहेगी ।
2. पलिनोमियल चर का अर्थ है, एक पेलनोमियल अज्ञात पद है ।

3.3 पलिनोमियल का योग / व्यंजकों का योग समान पलिनोमियल का योग :

नीचे के उदाहरण को देखो :
(i) $2 x+3 x=(2+3) x=5 x$ (वितरण नियम)
(ii) $\frac{2 \mathrm{x}^{2}}{5}+3 \mathrm{x}^{2}=\left(\frac{2}{5}+3\right) \mathrm{x}^{2}=\frac{17}{5} \mathrm{x}^{2}$ (वितरण नियम)

योग के संबंध में कुछ जानने की बातें :
(i) वितरण नियम का प्रयोग करके समान पदों का योगफल ज्ञात किया जाता है । (ऊपर के उदाहरण में है)
(ii) किन्हीं दो पलिनोमियल का योगफल ज्ञात करने के लिए समान पदों को व्यवस्थित करके योग किया जाता है ।
(iii) योग-संक्रिया में सहुलियत के लिए पहले पलिनोमियल के पदों को चर के घातानुसार (अध:क्रम या ऊर्ध्वक्रम) में लिखा जाता है ।

उदाहरण 2 : योग ज्ञात करो :

$\left(7 \mathrm{x}+8 \mathrm{x}^{2}+\mathrm{p}\right)$ और $3 \mathrm{x}^{2}+4 \mathrm{x}+30$
हल : (i) क्षैतिज विधि (Horizontal Method) : इस विधि में प्रत्येक पलिनोमियल के पदों को बड़े से छोटे के क्रम में लिखकर जोड़ा जाता है ।

आवश्यक योग : $\left(7 \mathrm{x}+8 \mathrm{x}^{2}+10\right)+\left(3 \mathrm{x}^{2}+4 \mathrm{x}+30\right)$

$$
\begin{array}{ll}
=\left(8 x^{2}+7 x+10\right)+\left(3 x^{2}+4 x+30\right) & \text { (समान पदों को व्यवस्थित किया गया) } \\
=(8+3) x^{2}+(7+4) x+(10+30) & \text { (वितरण नियम प्रयुक्त) } \\
=11 x^{2}+11 x+40 &
\end{array}
$$

(ii) स्तंभ विधि (Column Method) : इस विधि में योग संक्रिया का संपादन स्तंभ के आकार में किया जाता है ।

पहला : $\quad 8 \mathrm{x}^{2}+7 \mathrm{x}+10$
दूसरा : $\quad 3 \mathrm{x}^{2}+4 \mathrm{x}+30$
आवश्यक योगफल : $(8+3) x^{2}+(7+4) x+(10+30)$

$$
=11 x^{2}+11 x+40
$$

उदाहरण 3 : योगफल ज्ञात करो : $\left(2 \mathrm{x}^{2}-3+5 \mathrm{x}\right),\left(6-2 \mathrm{x}-\mathrm{x}^{2}\right)$ और $\left(5 \mathrm{x}-3 \mathrm{x}^{2}-4\right)$
हल : क्षैतिज विधि :
आवश्यक योगफल : $\left(2 \mathrm{x}^{2}-3+5 \mathrm{x}\right)+\left(6-2 \mathrm{x}-\mathrm{x}^{2}\right)+\left(5 \mathrm{x}-3 \mathrm{x}^{2}-4\right)$

$$
\begin{aligned}
& =\left(2 x^{2}+5 x-3\right)+\left(x^{2}-2 x+6\right)+\left(3 x^{2}+5 x-4\right) \\
& =\left(2 x^{2}-x^{2}+3 x^{2}\right)+(5 x-2 x+5 x)+(-3+6-4) \\
& =(2-1+3) x^{2}+(5-2+5) x+(-3+6-4) \\
& =4 x^{2}+8 x-1
\end{aligned}
$$

स्तंभ विधि : पहला : $2 \mathrm{x}^{2}+5 \mathrm{x}-3$
दूसरा : $-x^{2}-2 x+6$
तीसरा : $3 \mathrm{x}^{2}+5 \mathrm{x}-4$
आवश्यक योगफल $=(2-1+3) x^{2}+(5-2+5) x+(-3+6-4)$

$$
=4 x^{2}+8 x-1
$$

उदाहरण 4 : योगफल ज्ञात करो : $\left(3 \mathrm{x}^{3}-4 \mathrm{x}+7\right),\left(4-3 \mathrm{x}^{2}+8 \mathrm{x}+4 \mathrm{x}^{3}\right),\left(7 \mathrm{x}^{3}-2 \mathrm{x}^{2}+9\right)$
हल : क्षैतिज विधि :

$$
\begin{aligned}
& \left(3 x^{3}-4 x+7\right)+\left(4-3 x^{2}+8 x+4 x^{3}\right)+\left(7 x^{3}-2 x^{2}+9\right) \\
= & \left(3 x^{3}-4 x+7\right)+\left(4 x^{3}-3 x^{2}+8 x+4\right)+\left(-2 x^{2}+9\right) \\
= & \left(3 x^{3}+4 x^{3}+7 x^{3}\right)+\left(-3 x^{2}-2 x^{2}\right)+(-4 x+8 x)+(7+4+9) \\
= & (3+4+7) x^{3}+(-3-2) x^{2}+(-4+8) x+(7+4+9) \\
= & 14 x^{3}-5 x^{2}+4 x+20 .
\end{aligned}
$$

स्तंभ विधि : $3 x^{3}-0 \cdot x^{2}+4 x+7\left(x^{2}\right.$ के संख्यात्मक गुणांक के लिए ' 0 ' लिखा गया)

$$
\begin{aligned}
& 4 \mathrm{x}^{3}-3 \mathrm{x}^{2}+8 \mathrm{x}+4 \\
& 7 \mathrm{x}^{3}-2 \mathrm{x}^{2}+0 \cdot \mathrm{x}+9(\mathrm{x} \text { के संख्यात्मक गुणांक के लिए ' } 0 \text { ' लिखा गया }) \\
\text { योगफल }= & (3+4+7) \mathrm{x}^{3}+(-3-2) \mathrm{x}^{2}+(-4+8) \mathrm{x}+(7+4+9) \\
= & 14 \mathrm{x}^{3}-5 \mathrm{x}^{2}+4 \mathrm{x}+20 .
\end{aligned}
$$

अभ्यास 3 (a)

1. शून्य स्थान भरो :

(i) $2 x+2 x=(3+\ldots .) x=$.
(ii) $5 x+7 x=($ \qquad $+7) x=$ \qquad
(iii) $-6 x+4 x=\{(\ldots . .)+.(\ldots \ldots .)\} x=$. \qquad
(iv) $-2-3 x=\{(\ldots \ldots)+.(\ldots \ldots .)\} x=$. \qquad
(v) $\mathrm{x}-2 \mathrm{x}=\{(\ldots \ldots)+.(\ldots \ldots .)\} \mathrm{x}=$.
2. योगफल ज्ञात करो :
(i) 4 x और 3 x
(ii) 2 x और -3 x
(iii) $-3 x^{3}$ और $-2 x^{3}$
(iv) $-5 x^{2}$ से $2 x^{2}$
(v) $4 x$ और -4)
(vi) $2 x^{2}+3$ और $x^{2}-1$
(vii) $\mathrm{x}^{2}+1$ और $\mathrm{x}-1$
(viii) $\mathrm{x}^{2}+3+2 \mathrm{x}$ और $\mathrm{x}+1$
3. शून्यस्थान भरो :
(i) $3 x+2 x=(\quad)$
(ii) $(\quad)+x=8 x$
(iii) $2 x+(\quad)=6 x$
(iv) $3 x+4 x=4 x+(\ldots \ldots . .$.
(v) $2 \mathrm{x}+5 \mathrm{x}=(\quad)=2 \mathrm{x}$
(vi) $2 x+5 y+z=(\quad)+z=(2 x+z)+(\quad)$
4. योगफल ज्ञात करो :
(i) $2 \mathrm{x}, 3 \mathrm{x}, 5 \mathrm{x}$
(ii) $5 \mathrm{x}^{2}, \mathrm{x}^{2}, 3 \mathrm{x}^{2}$
(iii) $2 x^{3}, 3 x^{3}, 4 x^{3}$
(iv) $3 x^{2}+2 x$ और $x^{2}+3 x$
(v) $x^{3}+3$ और $4-x^{2}+x$
(vi) $2 \mathrm{x}^{2}+\mathrm{x}-2$ और $\mathrm{x}+2$
(vii) $5-2 x+x^{2}$ और $x^{2}+2 x-5$
(viii) $3 \mathrm{x}-2+\mathrm{x}^{2}$ और $\mathrm{x}^{2}+3 \mathrm{x}-2$
(ix) $1+2 x^{2}-3 x$ और $2 x+3+4 x^{2}$
(x) $2 \mathrm{x}^{2}-4 \mathrm{x}-3$ और $4 \mathrm{x}+3-2 \mathrm{x}^{2}$

3.4 पलिनोमियल का व्यवकलन :

हम जानते हैं कि a से b घटाने का अर्थ है a के साथ b का योज्य प्रतिलोम जोड़ना ।
हम लिख सकते हैं $\mathrm{a}-\mathrm{b}=\mathrm{a}+(-\mathrm{b})$
इस विधि का प्रयोग करके हम दो पलिनोमियल का व्यवकलन ज्ञात करेंगे ।
निम्न उदाहरण देखो :

उदाहरण 5 : (क्षैतिज विधि) :

$\left(3 x^{2}-6 x+17\right)$ से $\left(5 x-3 x^{2}+19\right)$ घटाइए :
हल : व्यवकलन $=\left(3 \mathrm{x}^{2}-6 \mathrm{x}+17\right)-\left(5 \mathrm{x}-3 \mathrm{x}^{2}+19\right)$

$$
\begin{aligned}
& =\left(3 x^{2}-6 x+17\right)+\left(3 x^{2}-5 x-19\right) \\
& =\left(3 x^{2}+3 x^{2}\right)+(-6 x-5 x)+(17-19) \\
& =(3+3) x^{2}+(-6-5) x+(17-19) \\
& =6 x^{2}-11 x-2
\end{aligned}
$$

स्तंभ विधि : $3 x^{2}-6 x+17$

$$
-3 x^{2}+5 x+19
$$

व्यवकलन $=(3+3) x^{3}+(-6-5) x+(17-19)$

$$
=6 x^{2}-11 x-2
$$

उदाहरण $6:\left(4 \mathrm{x}^{3}-2 \mathrm{x}^{2}+5\right)$ से $\left(2 \mathrm{x}^{3}-3-5 \mathrm{x}\right)$ घटाइए :
हल : व्यवकलन $=\left(4 \mathrm{x}^{3}-2 \mathrm{x}^{2}+5\right)-\left(2 \mathrm{x}^{3}-3-5 \mathrm{x}\right)$

$$
\begin{aligned}
& =\left(4 x^{3}-2 x^{2}+5\right)+\left(-2 x^{3}+3+5 x\right) \\
& =4 x^{3}-2 x^{2}+5+\left(-2 x^{3}+5 x+3\right) \\
& =\left(4 x^{3}-2 x^{3}\right)+\left(-2 x^{3}+5 x+5+3\right) \\
& \left.=(4-2) x^{3}+\left(-2 x^{2}\right)+5 x+5+3\right) \\
& =2 x^{3}-2 x^{2}+5 x+8
\end{aligned}
$$

स्तंभ विधि : $4 x^{3}-2 x^{2}+0 \cdot x+5$

$$
2 x^{3}+0 \cdot x^{2}-5 x-3
$$

व्यवकलन $=(4-2) x^{3}+\left(-2 x^{2}\right)+5 x+(5+3)$

$$
=2 x^{3}-2 x^{2}+5 x+8
$$

अभ्यास 3 (b)

1. शून्य स्थान भरो :

(i) $5 \mathrm{x}-3 \mathrm{x}=5 \mathrm{x}+(\mathrm{O}=\{()+()\} \mathrm{x}=(\ldots \ldots .)$.
(ii) $3 x-(-2 x)=3 x+()=\{()+()\} x=(\ldots \ldots \ldots)$
(iii) $-2 x-3 x=-2 x+()=\{()+()\} x=(\ldots \ldots .$.
(iv) $(2+3 x)-(3-2 x)=(2+3 x)+()=(2-3)+(3 x+\ldots \ldots)=.(\ldots \ldots .)+.(\ldots \ldots)$
(v) $(x-4)-(-3 x+2)=(x-4)+(\quad)=(x+3 x+(\ldots \ldots .)=.(\ldots \ldots)+.(\ldots \ldots)$.
2. घटाओ :
(i) $12 x$ से $9 x$
(ii) $9 x$ से $-3 x$
(iii) $-2 x$ से $3 x$
(iv) $-4 x$ से $-6 x$
(v) $(x+2)$ से $(3 x+2)$
(vi) 3 से $x^{2}+x+1$
(vii) $2 x^{2}-2 x-2$ से $x^{2}+2 x+4$
3. घटाओ :
(i) $2 x^{2}+2 x$ से $2 x^{2}$
(ii) $5 x^{2}+3 x$ से $x^{2}+3 x$
(iii) $2 x^{2}-2 x$ से $x^{2}+2 x$
(iv) $3 x^{2}+3 x+2$ से $x^{2}+3 x-2$
(v) $2 x^{2}-5 x-1$ से $x^{2}+5 x-1$
(vi) $4+3 x+2 x^{2}+x^{3}$ से $x^{3}+2 x^{2}-3 x-4$
(vii) $2 x^{3}-5-2 x^{2}-10 x$ से $x^{3}+20 x-x^{2}+3$

3.5 पलिनोमियल के गुणा :

(a) एक मनोमियल के साथ दूसरे मनोमियल का गुणा :
(दो एकपदियों को गुणा करना)
हम जानते हैं कि $3 \times \mathrm{x}=3 \mathrm{x}, \mathrm{x} \times \mathrm{x}=\mathrm{x}^{2}, \mathrm{x} \times \mathrm{x}^{2}=\mathrm{x}^{3}, 2 \mathrm{x}^{2} \times \mathrm{x}=2 \mathrm{x}^{3}$ आदि ।
अब नीचे के गुणा पर ध्यान दो :
(i) $2 \mathrm{x} \times 3 \mathrm{x}=(2 \times 3) 5(\mathrm{x} \times \mathrm{x})=6 \mathrm{x}^{2}$
(ii) $5 \mathrm{x} \times 4 \mathrm{x}^{2}=(5 \times 4) \times\left(\mathrm{x} \times \mathrm{x}^{2}\right)=20 \mathrm{x}^{3}$
(iii) $-7 y \times 3 y^{3}=(-7 \times 3) \times\left(y+y^{3}\right)=-21 y^{4}$

ध्यान देने पर मालूम होगा कि :
(i) दो मनोमियलों का गुणनफल एक मनोमियल होगा ।
(ii) दो मनोमियलों के गुणनफल का संख्यात्मक गुणांक =

प्रथम मनोमियल का संख्यात्मक गुणांक \times द्वितीय मनोमियल का संख्यात्मक गुणांक
(iii) तीन या तीन से अधिक मनोमियल का गुणनफल जानने के लिए पहले दो का गुणनफल ज्ञात करके उसे फिर तीसरे मनोमियल से गुणा करना पड़ता है । इस प्रकार बाद के मनोमियल को पहले के गुणनफल से गुणा करके तीनों का गुणनफल ज्ञात किया जाता है ।
(iv) गुणन की संक्रिया में क्रमविनिमय और वितरण नियमों का प्रयोग किया जा सकता है ।
(b) एकपदी व्यंजक द्विपद या त्रिपद व्यंजक के साथ गुणन :

2 x और $3 \mathrm{x}+5$ का गुणा करो ।
हल : $2 \mathrm{x} \times(3 \mathrm{x} \times 5)=2 \mathrm{x} \times 5 \mathrm{x}+2 \mathrm{x} \times 5$ (वितरण का नियम)

$$
=6 x^{2}+10 x
$$

उसी प्रकार दूसरा उदाहरण लेंगे :
-3 y और $(6-7 \mathrm{y})$ का गुणनफल ज्ञात करो :
हल : $-3 \mathrm{y} \times(6-7 \mathrm{y})=-3 \mathrm{y} \times\{6+(-7 \mathrm{y})\}$

$$
\begin{aligned}
& =-3 y \times 6+(-3 y) \times(-7 y) \\
& =-18 y+21 y^{2}
\end{aligned}
$$

वितरण-नियम का प्रयोग करके तुम एकपदी को बहु पद से गुणा कर सकोगे ।
उदाहरण : $2 \mathrm{x} \times\left(\mathrm{x}^{2}+3 \mathrm{x}+5\right)$

$$
\begin{aligned}
& =2 \mathrm{x} \times \mathrm{x}^{2}+2 \mathrm{x} \times 3 \mathrm{x}+2 \mathrm{x} \times 5 \\
& =2 \mathrm{x}^{3}+6 \mathrm{x}^{2}+10 \mathrm{x}
\end{aligned}
$$

(c) द्विपद को द्विपद से गुणा करना :

दो द्विपदों का गुणनफल ज्ञात करने के लिए हम वितरण का नियम प्रयोग करते हैं ।
उदाहरण के तौर पर : $(2 x+1)$ और $(x+3)$ का गुणा

$$
\begin{aligned}
& =(2 x+1)(x+3)=2 x(x+3)+1(x+3) \text { वितरण नियम) } \\
& =2 x^{2}+6 x+x+3=2 x^{2}+7 x+3 \text { (वितरण नियम) }
\end{aligned}
$$

उसी प्रकार $\left(2 x^{2}+1\right)$ और $(3-5)$ को गुणा करेंगे
$=\left(2 x^{2}+1\right)(x-5)=2 x^{2}(x-5)+1(x-5)$
$=2 \mathrm{x}^{2} \times \mathrm{x}+2 \mathrm{x}^{2} \times(-5)+1 \times(\mathrm{x})+1+(-5)$
$=2 \mathrm{x}^{3}-10 \mathrm{x}^{2}+\mathrm{x}-5$
गुणा करने के बाद समान पदों को इकट्ठा कर दिया जाता है । x के घात के क्रम से सजाकर उत्तर लिखा जाता है ।
टिप्पणी : वितरण नियम : $\mathbf{a}(\mathbf{b}+\mathbf{c})=\mathbf{a b}+\mathbf{a c}$
अथवा $(b+c) a=b a+c a=a b+a c$

याद रखो :

(i) किसी पद को शून्य ' 0 ' से गुणा करने से गुणनफल शून्य होता है ।
(ii) किसी पद को 1 से गुणा करने से खुद पद ही अपना गुणनफल होता है ।
(iii) गुणनफल के प्रारंभ में पदों को घात के क्रम से सजाकर लिखा जाता है ।
(iv) वितरण नियम का प्रयोग करके गुणा किया जाता है ।
(v) गुणनफल के समान पदों को सजाकर एक साथ लिखकर उसे सरल बनाया जाता है ।
(vi) पदों की गुणन क्रिया में क्रम विनिमय और सहयोग नियमों का प्रयोग किया जाता है ।

उदाहरण 7 : गुणा करो : $(\mathrm{x}+4)$ और $(3 \mathrm{x}-5)$
हल : $(\mathrm{x}+4) \times(3 \mathrm{x}-5)=\mathrm{x}(3 \mathrm{x}-5)+4(3 \mathrm{x}-5)$

$$
\begin{aligned}
& =x \cdot 3 x+x \cdot(-5)+4 \cdot 3 x+4 \cdot(-5) \\
& =3 x^{2}-5+12 x-20=3 x^{2}+7 x-20
\end{aligned}
$$

ध्यन दो : दो एकघात व्यंजक को गुणा करने से द्विघात व्यंजक बनता है ।
उदाहरण $8:(\mathrm{x}+2),(\mathrm{x}-1)$ और $(2 \mathrm{x}-5)$ को गुणा करो :
हल : गुणनफल $=(\mathrm{x}+2)(\mathrm{x}-1)(2 \mathrm{x}-5)=\{(\mathrm{x}+2)(\mathrm{x}-1)\} \times 2 \mathrm{x}-5$

$$
\begin{aligned}
& =\{(\mathrm{x}+2) \mathrm{x}+(\mathrm{x}+2)(-1)\} \times(2 \mathrm{x}-5)=\left(\mathrm{x}^{2}+2 \mathrm{x}-\mathrm{x}-2\right)(2 \mathrm{x}-5) \\
& =\left(\mathrm{x}^{2}+\mathrm{x}-2\right)(2 \mathrm{x}-5)=\left(\mathrm{x}^{2}+\mathrm{x}-2\right) 2 \mathrm{x}-\left(\mathrm{x}^{2}+\mathrm{x}-2\right)(-5) \\
& =2 \mathrm{x}^{3}+2 \mathrm{x}^{2}-4 \mathrm{x}-5 \mathrm{x}^{2}-5 \mathrm{x}+10=2 \mathrm{x}^{3}+2 \mathrm{x}^{2}-5 \mathrm{x}^{2}-4 \mathrm{x}-5 \mathrm{x}+10 \\
& =2 \mathrm{x}^{3}-3 \mathrm{x}^{2}-9 \mathrm{x}+10
\end{aligned}
$$

उदाहरण 9 : गुणा करो $\left(\mathrm{x}^{2}+\mathrm{x}+1\right)$ और $\left(\mathrm{x}^{2}-\mathrm{x}+1\right)$
हल : गुणफल $=\left(\mathrm{x}^{2}+\mathrm{x}+1\right)\left(\mathrm{x}^{2}-\mathrm{x}+1\right)$

$$
\begin{aligned}
& =x^{2}\left(x^{2}-x+1\right)+x\left(x^{2}-x+1\right)+1\left(x^{2}-x+1\right) \\
& =x^{2} \cdot x^{2}+x^{2} \times(-x)+x^{2} \cdot 1+x \cdot x^{2}+x(-x)+x \cdot 1 \\
& =x^{4}-x^{3}+x^{2}+x^{3}-x^{2}+x+x^{2}-x+1 \\
& =x^{4}-x^{3}+x^{3}+x^{2}-x^{2}+x^{2}+x-x+1=x^{4}+x^{2}+1
\end{aligned}
$$

ध्यान दो : दो द्विाघाती व्यंजकों का गुणनफल एक चतुर्घाती व्यंजक बनता है ।
उदाहरण 10 : गुणनफल ज्ञात करो : $(2 \mathrm{x}+5)$ और $\left(\mathrm{x}^{2}+3 \mathrm{x}-7\right)$
हल : $(2 \mathrm{x}+5)\left(\mathrm{x}^{2}+3 \mathrm{x}-7\right)=2 \mathrm{x}\left(\mathrm{x}^{2}+3 \mathrm{x}-7\right)+5\left(\mathrm{x}^{2}+3 \mathrm{x}-7\right)$

$$
\begin{aligned}
& =2 x \cdot x^{2}+2 x \cdot 3 x+2 x \cdot(-7)+5 \cdot x^{2}+5 \cdot 3 x+5 \cdot(-7) \\
& =2 x^{3}+6 x^{2}-14 x+5 x^{2}+15 x-35 \\
& =2 x^{3}+6 x^{2}+5 x^{2}-14 x+15 x-35=2 x^{3}+11 x^{2}+x-35
\end{aligned}
$$

1. शून्य स्थान भरो :
(i) $3 \times 5 \mathrm{x}=(\ldots$.
(ii) $3 \mathrm{x}^{2} \times 2 \mathrm{x}^{2}=(\ldots$.
(iii) $2 \mathrm{x} \times 0=(\ldots \ldots$.
(iv) $3 x^{3} \times 1=(\ldots \ldots$.
2. निम्न सारणी भरो :

पहला पद \rightarrow		2 x	-5 x	$3 \mathrm{x}^{2}$	-4 x	$-7 \mathrm{x}^{2}$
द्वितीय पद \downarrow					$9 \mathrm{x}^{3}$	
2 x					$15 \mathrm{x}^{3}$	
-5 x			$-15 \mathrm{x}^{3}$			
$3 \mathrm{x}^{2}$						
-4 x		$20 \mathrm{x}^{2}$				
$7 \mathrm{x}^{3}$						
$-9 \mathrm{x}^{2}$						

3. शून्य स्थान भरो :
(i) $3 \times(2 x-7)=3 \times 2 x+3 \times(\ldots \ldots .$.
(ii) $(-2) \times(3 x+1)=(-2) \times 3 x+(-2) \times(\ldots \ldots .$.
(iii) $(2 x-6) \times(-x)=2 x \times(\ldots \ldots .)+.(\ldots \ldots .) \times.(-x)$
(iv) $\left(-3 x^{2}\right)(2 x+4)=(\ldots \ldots ..) \times 2 x+\left(-x^{2}\right) \times(\ldots \ldots .$.
4. गुणा करो :
(i) $(x-1) \times(x+1)$
(ii) $(x-1) \times\left(x^{2}+x+1\right)$
(iii) $(x+1) \times\left(x^{2}-x+1\right)$
(iv) $(2 x+1) \times(x-2)$
(v) $(2 x+3) \times\left(x^{2}-2 x+5\right)$
(vi) $(-x-3) \times\left(x^{2}-5 x-2\right)$
(vii) $\left(\mathrm{x}^{2}+1\right) \times\left(\mathrm{x}^{2}-1\right)$
(viii) $\left(\mathrm{x}^{2}+1\right) \times\left(2 \mathrm{x}^{2}-\mathrm{x}+1\right)$
(ix) $\left(\mathrm{x}^{2}-1\right) \times\left(\mathrm{x}^{2}+\mathrm{x}+1\right)$

3.6 पलिनोमियल (बीजीय व्यंजकों का विभाजन) :

गुणा की संक्रिया से तुम परिचित हो । बताओ, $20 \mathrm{x} \div 5$ भाग का भागफल हमें कैसे ज्ञात होगा ? तो पहले हमें तय करना होगा कि $5 \times$ (कितना) $=20 \mathrm{x}$ । तुम्हें आसानी से पता चल जाएगा $5 \times(4 \mathrm{x})=20 \mathrm{x}$ हैं ।
खुद करो : सारणी के खाली स्थान भरो :

$2 \mathrm{x} \times 7=\square$	$-\times 7=14 \mathrm{x}$	$\frac{14 \mathrm{x}}{7}=\square$
$3 \mathrm{x} \times 8=-\times 8=24 \mathrm{x}$	$\frac{24 \mathrm{x}}{8}=\square$	
$4 \mathrm{x} \times 6=\square$	$-\quad \times 6=24 \mathrm{x}$	$\frac{24 \mathrm{x}}{6}=\square$
$\mathrm{x} \times \mathrm{a}=\square$	$-\quad \times \mathrm{a}=\mathrm{ax}$	$\frac{\mathrm{ax}}{\mathrm{a}}=\square$

(a) शून्यघाती पलिनोमियल ध्रुव(व्यंजक) भाजक से विभाजन :
(i) $10 \mathrm{x} \div 5=\frac{10 \mathrm{x}}{5}=2 \mathrm{x}$
(ii) $(21 x \div 7) \div 7=\frac{21 x+7}{7}=\frac{21 x}{7}+\frac{7}{7}=3 x+1$

याद रखो : जब $\mathrm{c} \neq \mathbf{0}$, हो, तब $(\mathrm{ax}+\mathrm{b}) \div \mathrm{c}=\frac{\mathrm{ax}+\mathrm{b}}{\mathrm{c}}=\frac{\mathrm{a}}{\mathrm{c}} \mathrm{x}+\frac{\mathrm{b}}{\mathrm{c}}$
आवश्यकता की दृष्टि से हम तय करेंगे कि $\mathrm{x}^{2} \div \mathrm{x}$ का अर्थ क्या है ?
$x^{2} \div x=\frac{x^{2}}{x}=\frac{x \times x}{x}=x(x \neq 0)$
याद रखो : जब $\mathrm{x} \neq 0$ हो, तब $\frac{\mathrm{x}}{\mathrm{x}}=1$ होगा ।
b. एकघाती पलिनोमियल (व्यंजक) भाजक से विभाजन
(i) $20 \mathrm{x}^{2} \div 5 \mathrm{x}=\frac{20 \mathrm{x}^{2}}{5 \mathrm{x}}=\frac{20 \times \mathrm{x} \times \mathrm{x}}{5 \mathrm{x}}=4 \mathrm{x}$
(ii) $\left(20 \mathrm{x}^{2}+10 \mathrm{x}\right) \div 5 \mathrm{x}=\frac{20 \mathrm{x}^{2}+10 \mathrm{x}}{5 \mathrm{x}}=\frac{20 \mathrm{x}^{2}}{5 \mathrm{x}}+\frac{10 \mathrm{x}}{5 \mathrm{x}}=4 \mathrm{x}+2$

उदाहरण 11 : निम्नलिखित का विभाजन करो :
(i) $12 x \div 4$
(ii) $15 \mathrm{x}^{2} \div 5$
(iii) $24 \mathrm{x}^{2} \div 8 \mathrm{x}$

हल : (i) $12 x \div 4$ का मान ज्ञात करने के लिए हम तय करेंगे-
$4 \times$ (कितना) $=12 x$
हम जानते है, $4 \times 3=12, \quad \therefore 4 \times 3 \mathrm{x}=12 \mathrm{x}$
अतएव $12 \mathrm{x} \div 4=3 \mathrm{x}$ होगा ।
(ii) $15 \mathrm{x}^{2} \div 5=$ कितना है, यह जानने के लिए हम तय करेंगे : $5 \times$ कितना $=15 \mathrm{x}^{2}$ है । अतएव $15 \mathrm{x}^{2} \div 5=3 \mathrm{x}^{2}$ होगा ।
(iii) $24 \mathrm{x}^{2} \div 8 \mathrm{x}$ का मान ज्ञात करने से पहले तय करेंगे $8 \times$ कितना $=24, \mathrm{x} \times$ कितना $=\mathrm{x}^{2}$ होगा । हम जानते है $8 \times 3=24, \mathrm{x} \times \mathrm{x}=\mathrm{x}^{2}$
$8 \mathrm{x} \times 3 \mathrm{x}=24 \mathrm{x}^{2}$ है । अतएव $24 \mathrm{x}^{2} \times 8 \mathrm{x}=3 \mathrm{x}$ होगा ।
उदाहरण 11 : विभाजन करो :
(i) $3 x^{2}+9 x \div 3 x$
(ii) $2 \mathrm{x}^{2}+6 \mathrm{x} \times 2 \mathrm{x}$
(iii) $24 \mathrm{x}^{3}-16 \mathrm{x}^{2}+8 \mathrm{x} \div 4 \mathrm{x}$

हल : (i) $\frac{3 x^{2}+9 x}{3 x}=\frac{3 x^{2}}{3 x}+\frac{9 x}{3 x}=x+3$
(ii) $\frac{2 x^{2}+6 x}{2 x}=\frac{2 x^{2}}{2 x}+\frac{6 x}{2 x}=x+3$
(iii) $\frac{24 x^{3}-16 x^{2}+8 x}{4 x}=\frac{24 x^{3}}{4 x}-\frac{16 x^{2}}{4 x}+\frac{8 x}{4 x}=6 x^{2}-4 x+2$

1. शून्य स्थान भरो :
(i) $3 \times(-)=12 \mathrm{x}$
(ii) $2 \mathrm{x} \times(-)=12 \mathrm{x}^{2}$
(iii) $4 \times(-)=-16 x^{2}$
(iv) $-3 \mathrm{x} \times(\square)=15 \mathrm{x}^{2}$

विभाजन करो :
2. (i) $8 x \div 4$
(ii) $8 x \div(-4)$
(iii) $(-8 \mathrm{x}) \div(4)$
(iv) $(-8 \mathrm{x}) \div(-4)$
3. (i) $21 x^{2} \div 3$
(ii) $21 x^{2} \div 3 x$
(iii) $21 x^{2} \div(-7 x)$
(iv) $21 x^{2} \div 3 x^{2}$
(v) $21 x^{2} \div\left(-3 x^{2}\right)$
4.
(i) $\left(15 x^{2}+10\right) \div 5$
(ii) $\left(16 x^{2}-12\right) \div 4$
(iii) $\left(24 x^{2}-8 x+12\right) \div 4$
(iv) $\left(20 x^{2}+15 x\right) \div 5 x$
(v) $\left(24 x^{2}+20 x\right) \div 4 x$
(vi) $\left(48 x^{2}-44 x\right) \div(-4 x)$

3.7 विस्तृत विधि से विभाजन :

मान लो हमें $12 \mathrm{x}^{2}+9 \mathrm{x}$ को 3 x से भाग देना है । यहाँ भाज्य $=12 \mathrm{x}^{2}+9 \mathrm{x}$ है और भाजक $=3 \mathrm{x}$ है । भाजक 3 x को जिस बीजीय व्यंजक से गुणा करने पर पहला पद $12 \mathrm{x}^{2}$ मिलेगा, वह भागफल का प्रथम पद होगा । भाजक 3 x को जिससे गुणा करने पर भाज्य का द्वितीय पद 9 x मिलेगा, वह भागफल का द्वितीय पद होगा ।

यह संक्रिया इस प्रकार है :

एकाधिक पदवाले व्यंजक (पलिनोमियल) भाजक से विभाजन :

एकाधिक पदवाले पलिनोमियल भाजक से विभाजन के विभिन्न चरण और कुछ उदाहरण नीचे दिए गए हैं ।

विभाजन के विभिन्न सोपान :

(i) पहले भाज्य और भाजक के पदों को बड़े से छोटे (या छोटे से बड़े) घात के क्रम से सजाना होगा ।
(ii) भाजक एकाधिक पदवाला होने पर भी भाज्य के प्रथम पद को भाजक के प्रथम पद से विभाजन करके भागफल का प्रथम पद तय करना होगा
(iii) भाजक और भागफल के गुणनफल को भाज्य से घटाया जाता है ।
(iv) मिले वियोगफल को दूसरे चरण में भाज्य के रूप में लिया जाता है । इस नए भाज्य के प्रथम पद को भाजक के प्रथम पद से भाग दिया जाता है ।
इस प्रकार शेषफल ' 0 ' होने तक भाग की संक्रिया चलती रहती है । अंत में भागफल ज्ञात किया जाता है । उदाहरण 13 : विभाजन करो : $\left(\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+6\right) \div(\mathrm{x}+2)$

हल :

$$
\begin{gathered}
x^{2}-x+3 \\
\begin{array}{l}
x^{3}+x^{2}+x+6 \\
x^{3}+2 x^{2} \\
(-)(-)
\end{array} \\
-x^{2}+x+6 \\
-x^{2}-2 x \\
(+)(+) \\
3 x+6 \\
3 x+6 \\
(-)(-)
\end{gathered}
$$

\therefore आवश्यक भागफल $=\mathrm{x}^{2}-\mathrm{x}+3$ होगा
टिप्णणी : जिस चरण में वियोगफल का घात भाजक के घात से कम होगा, उसी चरण में विभाजन की संक्रिया समाप्त होगी । बचा हुआ वियोगफल शेषफल ही होगा ।

उपर्युक्त विभाजन संबंधी सूचना :

प्रथम चरण : भाज्य के प्रथम पद को भाजक के प्रथम पद से भाग देने से भागफल x^{2} आया ।
भागफल x^{2} और भाजक के गुणनफल को भाज्य से घटाया गया ।
द्वितीय चरण : अब जो वियोगफल आया, वह इस चरण में भाज्य बन गया ।
इस भाज्य के प्रथम पद को भाजक के प्रथम पद से भाग देने से भागफल मिला $=(-x)$
\therefore भागफल का द्वितीय पद हुआ $=(-\mathrm{x})$
इस चरण के भागफल और भाजक के गुणनफल को भाज्य से घटाया गया ।
तृतीय चरण : ऊपर का वियोगफल इस चरण में भाज्य बन गया । इस भाज्य के प्रथम पद को भाजक के प्रथम पद से भाग देने से भागफल हुआ 3 ।
\therefore भागफल का तृतीय पद $(+3)$ हुआ ।
इस चरण में मिले भागफल और भाजक के गुणनफल को भाज्य से घटाया गया ।
वियोगफल (शेष फल) ' 0 ' होने से विभाज्यन की संक्रिया यहीं समाप्त हुई । विभाजन के तीन चरणों में मिले तीनों भागफल का योगफल लेने पर भागफल हुआ $=x^{2}-x+3$ ।

उदाहरण 14 : विभाजन करो : $\left(-8 \mathrm{x}^{3}+12 \mathrm{x}^{2}-6 \mathrm{x}+1\right) \div(2 \mathrm{x}-1)$
हल :

$$
\begin{array}{|c}
-4 x^{2}+4 x-1 \\
\hline-8 x^{3}+12 x^{2}-6 x+1 \\
-8 x^{3}+4 x^{2} \\
(+)(-) \\
\hline 8 x^{2}-6 x+1 \\
8 x^{2}-4 x \\
\hline(-)(+) \\
-2 x+1 \\
-2 x+1 \\
(+)(-) \\
\hline
\end{array}
$$

\therefore आवश्यक भागफल हुआ : $-4 \mathrm{x}^{2}+4 \mathrm{x}-1$ ।
उदाहरण 15 : विभाजन करो : $\left(\mathrm{x}^{3}-5 \mathrm{x}+2\right) \div(\mathrm{x}-2)$
हल :

$$
\begin{aligned}
& 2 \mathrm{x}^{2}-4 \mathrm{x} \\
& (-)(+) \\
& -x+2 \\
& -x+2 \\
& \begin{array}{c}
(+)(-) \\
0
\end{array}
\end{aligned}
$$

\therefore आवश्यक भागफल हुआ : $\mathrm{x}^{2}+2 \mathrm{x}-1$ ।
टिप्पणी : ध्यान दो, भाज्य में पद घातांक के घटते क्रम से व्यवस्थित हैं । पर x^{2} वाला कोई पद यहाँ नहीं है । इसलिए विभाजन में भाज्य लिखते समय x^{3} और $-5 x$ पद द्वय को लिखते समय बीच में और एक पद के लिए शून्यस्थान रखा गया है ।

3.7.1 विभाजन में ऑक्लिडियन विधि (Euclidian Algorithm) :

उपर के दोनों उदाहरणों में शेषफल ' 0 ' है । पर 7 को 2 से भाग देने पर शेषफल कभी ' 0 ' नहीं होता । उसी प्रकार 9 को 2 से भाग देने पर शेथ्फल भी ' 0 ' नहीं होता । 7 से 3 बार 2 लेने पर भी 1 बचता है । अर्थात् $7=2 \times 3+1$.

सामान्यतया हम कहते हैं : भाज्य $=$ भाजक \times भागफल + भागशेष
इसे ऑक्लिडियन विधि कहते हैं ।
एक बीजीय भाज्य को अन्य बीजीय व्यजंक भाजक से भाग देने के समय एक चरण से दूसरे चरण में आते समय भाज्य क्रमश: घटता जाता है । पर भाजक का घात स्थिर रहता है । एक स्थिति आएगी, जहाँ भाज्य का घात भाजक के घात से कम हो जाएगा । इस समय बचा हुआ व्यंजक शेषफल कहलाएगा । देखें, यह कैसे होता है :

उदाहरण 16 : भागफल और शेषफल ज्ञात करो : $\left(\mathrm{x}^{2}+11 \mathrm{x}+21\right) \div(\mathrm{x}+2)$
हल :

$$
x+2 \begin{aligned}
& x+9 \\
& \begin{array}{l}
\begin{array}{l}
x^{2}+11 x+21 \\
x^{2}+2 x \\
(-)(-)
\end{array} \\
9 x+21 \\
9 x+18 \\
(-)(-)
\end{array} \\
& \frac{3 \text { शेषफल }}{}
\end{aligned}
$$

ध्यान दो : यहाँ शेषफल 3 का घात ' 0 ' है । यह $(\mathrm{x}+2)$ भाजक के घात (1) से कम है ।
यहॉ हम लिखेंगे $\left(\mathrm{x}^{2}+11 \mathrm{x}+21\right)=(\mathrm{x}+2)(\mathrm{x}+9)+3$
इस विभाजन संक्रिया में भागफल $(x+9)$ है, शेषफल 3 है ।
उदाहरण 17 : भागफल और शेषफल ज्ञात करो : $\left(\mathrm{x}^{3}+8\right) \div(\mathrm{x}-2)$
हल :

$$
\begin{aligned}
& \mathrm{x}^{2}+2 \mathrm{x}+4 \\
& \mathrm{x}-2 \begin{array}{|}
\begin{array}{l}
\mathrm{x}^{3}+8 \\
\mathrm{x}^{3}-2 \mathrm{x}^{2} \\
(-)(+)
\end{array} \\
2 \mathrm{x}^{2}+8 \\
2 \mathrm{x}^{2}-4 \mathrm{x} \\
(-)(+)
\end{array} \\
& \frac{4 \mathrm{x}+8}{4 \mathrm{x}-8} \\
& \frac{(-)(+)}{16 \text { शेषफल }}
\end{aligned}
$$

भागफल $=x^{2}+2 x^{2}+4$, शेषफल $=16$ है ।
उदाहरण 18 : भाजक $=x+5$, भागफल $=x^{2}-1$, और शेषफल $=(-3)$, भाज्य ज्ञात करो ।
हल $:$ भाज्य $=$ भाजक \times भागफल + भागशेष

$$
\begin{aligned}
& =(x+5)\left(x^{2}-1\right)+(-3)=x\left(x^{2}-1\right)+5\left(x^{2}-1\right)-3 \\
& =x^{3}-x+5 x^{2}-5-3=x^{3}+5 x^{2}-x-8
\end{aligned}
$$

उदाहरण 19 : जब $\mathrm{x}^{2}-7 \mathrm{x}+\mathrm{a},(\mathrm{x}-3)$ से विभाजित हो सके, तो a का मान ज्ञात करो ।
हल :

$$
\begin{array}{r}
x-3 \begin{array}{l}
x-4 \\
\begin{array}{l}
x^{2}-7 x+a \\
x^{2}-3 x \\
(-) \quad(+)
\end{array} \\
\begin{array}{l}
-4 x+a \\
-4 x+12 \\
(+)(-)
\end{array} \\
\frac{0}{2}
\end{array}
\end{array}
$$

यहॉ शेषफल $a=12$ होगा ।

अभ्यास 3 (e)

1. शून्य स्थान भरो :
(i) भाजक $=2 \mathrm{x}+1$, शेषफल $=0$, भागफल $=3 \mathrm{x}$, भाज्य का मान है : $\left(0,3 x, 2 x+1,6 x^{2}+3 x\right)$
(ii) भाजक $=3 \mathrm{x}^{2}$, शेषफल $=0$, भागफल $=3 \mathrm{x}$, भाजक $=$ \qquad $(0,2 x, 3 x, x)$
(iii) भाज्य $=6 \mathrm{x}^{3}+4 \mathrm{x}+1$, शेषफल $=1$, भाजक $=2 \mathrm{x}$, भागफल $=$ \qquad $\left(1,2 x^{2}+2,3 x^{2}+1,3 x^{2}+2\right)$
(iv) भाजक $=2 x^{2}$, भाज्य $=8 x^{4}+6 x^{2}+1$, भागफल $=4 x^{2}+3$, हो तो शेषफल होगा $=\left(0,1,4 \mathrm{x}^{2}+3,3 \mathrm{x}^{2}+4\right)$
(v) भाजक $=4 x$, भागफल $=3 x+2$, शेषफल $=2$, भाज्य $=$ \qquad $\left(0,12 x^{2}, 12 x^{2}+8 x, 12 x^{2}+8 x+2\right)$
2. विभाजन करो :
(i) $\left(x^{2}-11 x+28\right) \div(x-4)$
(ii) $\left(x^{2}-11 x+28\right) \div(x-7)$
(iii) $\left(\mathrm{x}^{2}-8 \mathrm{x}+15\right) \div(\mathrm{x}+3)$
(iv) $\left(\mathrm{x}^{2}-1\right) \div(\mathrm{x}+1)$
(v) $\left(x^{3}+1\right) \div(x+1)$
(vi) $\left(x^{3}-1\right) \div(x-1)$
(vii) $\left(2 \mathrm{x}^{3}-\mathrm{x}^{2}+\mathrm{x}+1\right) \div(2 \mathrm{x}+1)$
(viii) $\left(\mathrm{x}^{3}-4 \mathrm{x}^{2}+\mathrm{x}+6\right) \div(\mathrm{x}-1)$
(ix) $\left(x^{3}-4 x^{2}+x+6\right) \div(x-3)$
(x) $\left(5 \mathrm{x}^{2}-4+6 \mathrm{x}^{3}\right) \div(-2+3 \mathrm{x})$
3. भागफल और शेषफल ज्ञात करो :
(i) $\left(x^{2}+15 x+56\right) \div(x+1)$
(ii) $\left(\mathrm{x}^{2}-12 \mathrm{x}+30\right) \div(\mathrm{x}-1)$
(iii) $\left(-7-6 x+4 x^{2}\right) \div(2 x-1)$
(iv) $\left(6 x+27 x^{3}-9 x^{2}+1\right) \div(3 x-1)$
(v) $\left(8 \mathrm{x}^{3}-1\right) \div(2 \mathrm{x}+1)$
(vi) $\left(\mathrm{x}^{3}-1\right) \div(-\mathrm{x}-1)$
4. 'a' का मान ज्ञात करो :
(i) जब $\left(\mathrm{x}^{2}-5 \mathrm{x}+\mathrm{a}\right),(\mathrm{x}+2)$ से विभाजित होगा ।
(ii) जब $\left(4 \mathrm{x}^{2}-6 \mathrm{x}+\mathrm{a}\right),(2 \mathrm{x}-1)$ से विभाजित होगा ।
(iii) जब $\left(6 x^{2}-4 x+a\right),(3 x+1)$ से विभाजित होगा ।

3.8 सर्वसमिकाएँ (Identities) :

आओ, हम निम्न गणितीय उक्ति का परीक्षण करें,
$(a+1)(a+2)=a^{2}+3 a+2$.
$a=10$ लें
बायाँ पक्ष $($ L.H.S. $)=(a+1)(a+2)=(10+1)(10+2)=11 \times 12=132$
दायाँ पक्ष (R.H.S.) $=a^{2}+3 a+2=(10)^{2}+3 \times 10+2$

$$
=100+30+2=132
$$

a के लिए 10 लें तो उक्ति का बायाँ पक्ष = दायाँ पक्ष होगा ।
उसी प्रकार $\mathrm{a}=-5$ लें
बायाँ पक्ष $=(a+1)(a+2)=(-5+1)(-5+2)=(-4) \times(-3)=12$
दायाँ पक्ष $=\mathrm{a}^{2}+3 \mathrm{a}+2=(-5)^{2}+3 \times(-5)+2=25-15+2=12$
यहाँ $\mathrm{a}=(-5)$ हो तो उक्ति का बायाँ पक्ष $=$ दायाँ पक्ष
a के अन्य मान लेकर देखो । देखोगे कि ' a ' के प्रत्येक मान के लिए उक्ति का बायाँ पक्ष $=$ दायाँ पक्ष होगा । याद रखो : जे उक्ति इसके बीजीय व्यंजकों के चर के किसी भी मान के लिए सत्य होता है, उसे सर्वसमिका कहते हैं ।

अतएव $(a+1)(a+2)=a^{2}+3 a+2$ एक सर्वसमिका है ।

अन्य एक उक्ति लें ।
उक्ति है : $\mathrm{a}^{2}+3 \mathrm{a}+2=132$
यहाँ $\mathrm{a}=10$ के लिए सत्य है । (परीक्षण करो)
पर यह $a=-5$, या $a=2$ के लिए सत्य नहीं है ।
अतएव उक्ति (2) एक सर्वसमीका नहीं है ।
यदि कोई उक्ति बीजीय व्यंजकों वे च चर के वुəछ निश्चित मानों के लिए सत्य होता है, उसे समीकरण कहते हैं ।

3.9 कुछ मानक सर्वसमिकाएँ :

(a) दो द्विपदी व्यंजकों वे गुणनफल से बने निम्न सर्वसमिकाएँ बीजगणित में एक एक मानक सर्वसमिकाएँ हैं।
(i) $(a+b)^{2}=(a+b)(a+b)$ (परिभाषा)

$$
\begin{align*}
& =\mathrm{a}(\mathrm{a}+\mathrm{b})+\mathrm{b}(\mathrm{a}+\mathrm{b}) \text { (वितरण नियम) } \\
& =\mathrm{a}^{2}+\mathrm{ab}+\mathrm{ba}+\mathrm{b}^{2} \quad \text { (वितरण नियम) } \\
& =\mathrm{a}^{2}+\mathrm{ab}+\mathrm{ab}+\mathrm{b}^{2} \quad \text { (क्रमविनियम नियम) } \\
& =\mathrm{a}^{2}+2 \mathrm{ab}+\mathrm{b}^{2} \quad \therefore(\mathrm{a}+\mathrm{b})^{2}=\mathrm{a}^{2}+2 a b+\mathrm{b}^{2} \tag{i}
\end{align*}
$$

(ii) $(\mathrm{a}-\mathrm{b})^{2}=(\mathrm{a}-\mathrm{b})(\mathrm{a}-\mathrm{b})$ (परिभाषा)

$$
\begin{align*}
& =a(a-b)-b(a-b) \quad \text { (िितरण नियम) } \\
& =a^{2}-a b-b a+b^{2} \quad \text { (वितरण नियम) } \\
& =a^{2}-a b-a b+b^{2} \quad((\because a b=b a), \text { क्रमविनियम नियम) } \\
& =a^{2}-2 a b+b^{2} \quad \therefore(a-b)^{2}=a^{2}-2 a b+b^{2} \ldots \ldots \tag{ii}
\end{align*}
$$

(iii) $(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})=\mathrm{a}(\mathrm{a}-\mathrm{b})+\mathrm{b}(\mathrm{a}-\mathrm{b}) \quad$ (परिभाषा)

$$
\begin{align*}
& =a^{2}-a b+a b-b^{2} \quad(\because a b=b a) \\
& =a^{2}-a b+a b-b^{2} \quad(\text { क्रमविनियम नियम }) \\
& =a^{2}-b^{2} \\
& \left(\therefore(a+b)(a-b)=a^{2}-b^{2} \ldots \ldots\right. \text { (iii) } \tag{iii}
\end{align*}
$$

(iv) $(x+a)(x+b)=x(x+b)+a(x+b)$ (वितरण नियम)

$$
=x^{2}+x b+a x+a b \text { (वितरण नियम) }
$$

$$
\begin{align*}
= & x^{2}+b x+a x+a b(\text { गुणन का क्रम विनिमय नियम) } \\
& =x^{2}+a x+b x+a b \text { (योग का क्रम विनिमय नियम) } \\
& =x^{2}+(a+b) x+a b \text { (गुणन का क्रम विनिमय नियम) } \\
\therefore(x+a)(x+b) & =x^{2}+(a+b) x+a b \tag{iv}
\end{align*}
$$

टिप्पणी : (1) सर्वसमिका (iv) में $b=-b$ लें तो हमें प्राप्त होगा ।

$$
(x+a)(x-b)=x^{2}+(a-b) x-a b
$$

(2) सर्वसमिका (iv) में $\mathrm{a}=-\mathrm{a}$ और $\mathrm{b}=-\mathrm{b}$ लें तो

$$
(\mathrm{x}-\mathrm{a})(\mathrm{x}-\mathrm{b})=\mathrm{x}^{2}-(\mathrm{a}+\mathrm{b}) \mathrm{x}+\mathrm{ab} \text { होगा । }
$$

(3) सर्वसमिका (iv) में $\mathrm{a}=-\mathrm{a}$ लें तो
$(\mathrm{x}-\mathrm{a})(\mathrm{x}+\mathrm{b})=\mathrm{x}^{2}-(\mathrm{a}-\mathrm{b}) \mathrm{x}-\mathrm{ab}$ होगा ।

खुद करो :

1. सर्वसमिका (i) में b के स्थान पर $-b$ लेकर देखो, क्या सर्वसमिका का (ii) मिलती है ?
2. $\mathrm{a}=2, \mathrm{~b}=3, \mathrm{x}=5$ लेकर सर्वसमिका (iv) की सत्यता का परीक्षण करो ।
3. सर्वसमिका (iv) में $\mathrm{a}=\mathrm{b}$ लेने पर क्या मिलेगा ? क्या इसका सर्वसमिका (i) से संबंध है ?
4. सर्वसमिका (iv) में $\mathrm{a}=-\mathrm{c}$ और $\mathrm{b}=-\mathrm{c}$ लें तो क्या मिलेगा ? इसका क्या सर्वसमिका (ii) से कोई संबंध है ?
5. सर्वसमिका (iv) में $b=-a$ लें तो क्या मिलेगा ? इसका क्या सर्वसमिका (iii) से क्या कोई संबंध है ?

उदाहरण 1 : सर्वसमिका (i) का प्रयोग करके (i) $(2 \mathrm{x}+3 \mathrm{y})^{2}$, (ii) $(103)^{2}$ ज्ञात करो ।
हल : $(2 \mathrm{x}+3 \mathrm{y})^{2}=(2 \mathrm{x})^{2}+2(2 \mathrm{x})(3 \mathrm{y})+(3 \mathrm{y})^{2}$

$$
=4 x^{2}+12 x y+9 y^{2}
$$

(ii) $(103)^{2}=(100+3)^{2}$
$=(100)^{2}+2 \times 100 \times 3+3^{2}$
$=10000+600+9=10609$

उदाहरण 2 : (सर्वसमिका (ii) का प्रयोग करके
(i) $(4 p-3 q)^{2}$
(ii) $(4.9)^{2}$ ज्ञात करो ।

हल : (i) $\quad(4 p-3 q)^{2}=(4 p)^{2}-2(4 p)(3 q)+(3 q)^{2}=16 p^{2}-24 p q+9 q^{2}$
(ii) $\quad(4.9)^{2}=(5.0-0.1)^{2}=(5.0)^{2}-2(5.0)(0.1)+(0.1)^{2}$

$$
=25.00-1.00+0.01=24.01
$$

उदाहरण 3 : सर्वसमिका (iii) का प्रयोग करके
(i) $(3 m+2 n)(3 m-2 n)$
(ii) $983^{2}-17^{2}$
(iii) 194×206 का सरलीकृ मान तय करो ।

हल : (i) $\quad(3 \mathrm{~m}+2 \mathrm{n})(3 \mathrm{~m}-2 \mathrm{n})=(3 \mathrm{~m})^{2}-(2 \mathrm{n})^{2}=9 \mathrm{~m}^{2}-4 \mathrm{n}^{2}$
(ii) $983^{2}-17^{2}=(983+17)(983-17)=1000 \times 966=966000$ $\left[a^{2}-b^{2}=(a+b)(a-b)\right.$ के सर्वसमिका में $a=983, b=17$ लेकर)
(iii) $194 \times 206=(200-6) \times(200+6)=200^{2}-6^{2}=40000-36=39964$

उदाहरण 4 : सर्वसमिका (iv) का प्रयोग करके निम्न बीजीय व्यंजकों का गुणनफल ज्ञात करो :
(i) $(p+5)(p+3)$
(ii) $(a+2)(a-4)$ (iii) $(x-7)(x-6)$

हल : (i) $\quad(\mathrm{p}+5)(\mathrm{p}+3)$

$$
=\mathrm{p}^{2}+(5+3) \mathrm{p}+5 \times 3=\mathrm{p}^{2}+8 \mathrm{p}+15
$$

(ii) $(a+2)(a-4)$
$=\mathrm{a}^{2}+\{2+(-4)\} \mathrm{a}+2 \times(-4)=\mathrm{a}^{2}-2 \mathrm{a}-8$
(iii) $(\mathrm{x}-7)(\mathrm{x}-6)$

$$
=x^{2}+\{(-7)+(-6)\} x+(-7)(-6)=x^{2}-16+42
$$

उदाहरण 5 : सर्वसमिका (iv) का प्रयोग करके निम्नलिखित प्रश्नों का गुणनफल ज्ञात करो :
(i) 501×502
(ii) 95×103

हाल : (i) $501 \times 502=(500+1)(500+2)$

$$
\begin{aligned}
& =500^{2}+(1+2) \times 500+1 \times 2 \\
& =250000+1500+2=251502
\end{aligned}
$$

(ii) $95 \times 103=(100-5)(100+3)$

$$
=100^{2}+\{(-5)+3\} \times 100+(-5) \times 3
$$

$$
=10000-200-15=9785
$$

(b) दो त्रिपदी बीजीय व्यंजकों (पलिनोमियल) के गुणनफल से उत्पन्न अन्य एक महत्वपूर्ण सर्वसमिका के संबंध में चर्चा :

$$
\begin{align*}
&(a+b+c)^{2}=(a+b+c)(a+b+c) \quad \text { (परिभाषा) } \\
&=a(a+b+c)+b(a+b+c)+c(a+b+c) \quad \text { (वितरण नियम) } \\
&=a^{2}+a b+a c+b a+b^{2}+b c+c a+c b+c^{2} \\
&=a^{2}+b^{2}+c^{2}+a b+b a+a c+c a+b c+c b \\
&=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a(a b=b a, b c=c b, c a=a c) \\
& \therefore(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a . \ldots \ldots \ldots \ldots \ldots \tag{v}
\end{align*}
$$

विकल्प विधि :

सर्वसमिका (i) का प्रयोग करने से मिलेगा :

$$
\begin{aligned}
(\mathrm{a}+\mathrm{b}+\mathrm{c})^{2} & =\{(\mathrm{a}+\mathrm{b})+\mathrm{c}\}^{2}=(\mathrm{a}+\mathrm{b})^{2}+2(\mathrm{a}+\mathrm{b})+\mathrm{c}^{2} \quad \text { (सर्वसमिका (i) का प्रयोग हुआ) } \\
& =\mathrm{a}^{2}+2 \mathrm{ab}+\mathrm{b}^{2}+2 \mathrm{ca}+2 \mathrm{bc}+\mathrm{c}^{2} \\
& =\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}+2 \mathrm{ab}+2 \mathrm{bc}+2 \mathrm{ca}
\end{aligned}
$$

$\therefore(a+b+c)^{2}=a^{2}+b^{2}+c^{2}=2 a b+2 b c+2 c a$
टिप्पणी :

1. सर्वसमिका (v) में $\mathrm{c}=-\mathrm{c}$ लें तो मिलेगा,

$$
(a+b-c)^{2}=a^{2}+b^{2}+c^{2}+2 a b-2 b c-2 c a
$$

2. सर्वसमिका (v) में $b=-b$ लें तो मिलेगा,

$$
(a-b+c)^{2}=a^{2}+b^{2}+c^{2}-2 a b-2 b c+2 c a
$$

3. सर्वसमिका (v) में $\mathrm{b}=-\mathrm{b}$ और $\mathrm{c}=-\mathrm{c}$ लें तो मिलेगा,

$$
(a-b-c)^{2}=a^{2}+b^{2}+c^{2}-2 a b+2 b c+2 c a
$$

उदाहरण 6 : निम्न बीजीय व्यंजकों का वर्ग ज्ञात करो :
(i) $a+2 b+c$
(ii) $x+2 y-3 z$

हल : (i) $(\mathrm{a}+2 \mathrm{~b}+\mathrm{c})^{2}=\mathrm{a}^{2}+(2 \mathrm{~b})^{2}+\mathrm{c}^{2}+2 \cdot \mathrm{a} \cdot 2 \mathrm{~b}+2.2 \mathrm{~b} . \mathrm{c}+2 \mathrm{c} \cdot \mathrm{a}$

$$
=a^{2}+4 b^{2}+c^{2}+4 a b+4 b c+2 c a
$$

(ii) $(x+2 y-3 z)^{2}=x^{2}+(2 y)^{2}+(-3 z)^{2}+2 x .2 y+2.2 y(-3 z)+2(-3 z) x$ $=x^{2}+4 y^{2}+9 z^{2}+4 x y-12 y z-6 z x$

उदाहरण 7 : निम्न बीजीय व्यंजकों को पूर्णवर्ग पद में लिखो :
(i) $\mathrm{a}^{2}+8 \mathrm{ab}+16 \mathrm{~b}^{2}$
(ii) $4 x^{2}-4 x+1$
(iii) $9 x^{2}-12 x y+4 y^{2}$
(iv) $x^{2}+6 x y+9 y^{2}$
(v) $4 x^{2}+9 y^{2}+16 z^{2}+12 x y+24 y z+16 x z$
(vi) $\mathrm{m}^{2}+4 \mathrm{n}^{2}+25 \mathrm{z}^{2}-4 \mathrm{mn}-20 \mathrm{nz}+10 \mathrm{mz}$

हल :

(i) $\mathrm{a}^{2}+8 \mathrm{ab}+16 \mathrm{~b}^{2}=(\mathrm{a})^{2}+2 \cdot \mathrm{a} \cdot 4 \mathrm{~b}+(4 \mathrm{~b})^{2}=(\mathrm{a}+4 \mathrm{~b})^{2}$ सर्वसमिका - (i)
(ii) $4 \mathrm{a}^{2}-4 \mathrm{x}+1=(2 \mathrm{x})^{2}-2 \cdot 2 \mathrm{x} \cdot 1+(1)^{2}=(2 \mathrm{x}-1)^{2}$

सर्वसमिका - (ii)
(iii) $9 x^{2}-12 x y+4 y^{2}=(3 x)^{2}-2.3 x \cdot 2 y+(2 y)^{2}=(3 x-2 y)^{2}$

सर्वसमिका - (iii)
(iv) $x^{2}+6 x y+9 y^{2}=(x)^{2}+2 \cdot x \cdot 3 y+(3 y)^{2}=(x+3 y)^{2}$

सर्वसमिका - (i)
(v) $4 x^{2}+9 y^{2}+16 z^{2}+12 x y+24 y z+16 x z$

$$
\begin{aligned}
& =(2 \mathrm{x})^{2}+(3 \mathrm{y})^{2}+(4 \mathrm{z})^{2}+2 \cdot 2 \mathrm{x} \cdot 3 \mathrm{y}+2 \cdot 3 \mathrm{y} \cdot 4 \mathrm{z}+2 \cdot 4 \mathrm{x} \cdot 2 \mathrm{x} \\
& =(2 \mathrm{x}+3 \mathrm{y}+4 \mathrm{z})^{2}
\end{aligned}
$$

सर्वसमिका - (v)
(vi) $\mathrm{m}^{2}+4 \mathrm{n}^{2}+25 \mathrm{z}^{2}-4 \mathrm{mn}-20 \mathrm{nz}+10 \mathrm{mz}$

$$
\begin{align*}
& =(\mathrm{m})^{2}+(2 \mathrm{n})^{2}+(5 \mathrm{z})^{2}-2 \mathrm{~m} \cdot 2 \mathrm{n}-2.2 \mathrm{n} \cdot 5 \mathrm{z}+2.5 \mathrm{z} \cdot \mathrm{~m} \\
& =(\mathrm{m}-2 \mathrm{n}+5 \mathrm{z})^{2} \tag{2}
\end{align*}
$$

सर्वसमिका - (v) टिप्पणी -

विकल्प विधि :

$$
\begin{aligned}
& \mathrm{m}^{2}+4 \mathrm{n}^{2}+25 \mathrm{z}^{2}-4 \mathrm{mn}-20 \mathrm{nz}+10 \mathrm{mz} \\
& =(\mathrm{m})^{2}+(-2 \mathrm{n})^{2}+(5 \mathrm{x})^{2}+2 \mathrm{~m}(-2 \mathrm{n})+2(-2 \mathrm{n}) 5 \mathrm{x}+2.5 \mathrm{zm} \\
& =(\mathrm{m}-2 \mathrm{n}+5 \mathrm{z})^{2} \quad \text { सर्वसमिका (v) }
\end{aligned}
$$

अभ्यास 3 (f)

1. शून्य स्थान भरो :
(i) $(a+2)^{2}=a^{2}+(-) a+2^{2}$
(2, 29, 4, 4a)
(ii) $(3+y)^{2}=9+3(-)+y^{2}$
(y, 2y, 3y, 4y)
(iii) $(4-\mathrm{y})^{2}=16+2(-)+\mathrm{y}^{2}$
$(-2,-2 y,-4,-4 y)$
(iv) $(2 x-3 y)^{2}=4 x^{2}-3(-)+9 y^{2}$
(2xy, 3xy, 4xy, 12xy)
(v) $(\mathrm{x}+\mathrm{a})(\mathrm{x}-\mathrm{b})=\mathrm{x}^{2}+(-) \mathrm{x}-\mathrm{ab}$
$\{(\mathrm{a}+\mathrm{b}, \mathrm{a}-\mathrm{b}, \mathrm{b}-\mathrm{a},-(\mathrm{a}+\mathrm{b})\}$
2. सूत्र का प्रयोग करके निम्न व्यंजकों का वर्ग ज्ञात करो :
(i) $\mathrm{b}+\mathrm{c}$
(ii) $(4+\mathrm{b})$
(iii) $\mathrm{r}-10$
(iv) $3 \mathrm{n}+2$
(v) $2 \mathrm{~m}+\mathrm{n}$
(vi) $7 \mathrm{p}-\mathrm{q}$
(vii) $2 x+3 y$
(viii) $2 \mathrm{~m}-3 \mathrm{n}-\mathrm{p}$
(ix) $x-y+4 z$
(x) $a+2 b+c$
3. सूत्रों का प्रयोग करके वर्ग ज्ञात करो :
(i) 102
(ii) 304
(iii) 1003
(iv) 4001
4. आवश्यक सर्वसमिका का प्रयोग करके मान ज्ञात करो :
(i) 99^{2}
(ii) 998^{2}
(iii) 297×303
(iv) 78×82
(v) 8.9^{2}
(vi) 1.05×9.5
(vii) $51^{2}-49^{2}$
(viii) $(1.02)^{2}-(0.98)^{2}$
(ix) $153^{2}-147^{2}$
5. $(x+a)(x+b)=x^{2}+(a+b) x+a b$ सर्वसमिका का प्रयोग करके गुणनफल ज्ञात करो :
(i) 1035104 (ii) 5.155 .2 (iii) 103×98
(iv) 9.7×9.8
6. आवश्यक सर्वसमिका का प्रयोग करके गुणनफल ज्ञात करो :
(i) $(x+3)(x+3)$
(ii) $(2 y+5)(2 y+5)$
(iii) $(2 a-7)(2 a-z)$
(iv) $(1.1 \mathrm{~m}-0.4)(1.1 \mathrm{~m}+0.4)$
(v) $\left(a^{2}+b^{2}\right)\left(-a^{2}+b^{2}\right)$
(vi) $(6 x-7)(6 x+7)$
(vii) $(p-5)(p+5)$
(viii) $(2 x+3 y)(3 y-2 x)$
(ix) $(x+1)(x-1)\left(x^{2}+1\right)$
(x) $(2 \mathrm{y}+3)(2 \mathrm{y}-3)\left(4 \mathrm{y}^{2}+9\right)$
7. $(x+a)(x+b)=x^{2}+(a+b) x+a b$ की सर्वसमिका का प्रयोग करके गुणनफल ज्ञात करो :
(i) $(x+3)(x+7)$,
(ii) $(4 x+5)(4 x+1)$,
(iii) $(4 x-5)(4 x-1)$
(iv) $(4 \mathrm{x}+5)(4 \mathrm{x}-1)$
(v) $\left(2 \mathrm{a}^{2}+9\right)\left(2 \mathrm{a}^{2}+5\right)$
(vi) $(x y z-4)(x y z-2)$
8. सरल करो :
(i) $\left(a^{2}-b^{2}\right)^{2}+\left(a^{2}+b^{2}\right)^{2}$
(ii) $(2 x+5)^{2}-(2 x-5)^{2}$
(iii) $(7 m-8 n)^{2}+(7 m+8 n)^{2}$
(iv) $(4 m+5 n)^{2}+(5 m+4 n)^{2}$
(v) $(2.5 p-1.5 q)^{2}-(1.5 p-2.5 q)^{2}$
(vi) $(\mathrm{ab}+\mathrm{bc})^{2}-2 \mathrm{ab}^{2} \mathrm{c}$
(vii) $\left(m^{2}-n^{2} m\right)^{2}+2 m^{2} n^{2}$
(viii) $(\mathrm{a}+\mathrm{b}-\mathrm{c})^{2}+(\mathrm{a}-\mathrm{b}-\mathrm{c})^{2}$
(ix) $(2 \mathrm{a}-3 \mathrm{~b}-\mathrm{c})^{2}+(2 \mathrm{a}-\mathrm{b}+5 \mathrm{c})^{2}$
(x) $(3 x-4 y+z)^{2}-(x-2 y-z)^{2}$
9. निम्नलिखित बीजीय व्यजकों को पूर्णवर्ग में व्यक्त करो :
(i) $4 x^{2}+12 x y+9 y^{2}$
(ii) $64 m^{2}-48 m n+9 n^{2}$
(iii) $4 x^{2}-4 x+1$
(iv) $x^{2}+4 y^{2}+z^{2}+4 x y+4 y z+2 z x$
(v) $4 x^{2}+y^{2}+z^{2}-4 x y+2 y z-4 z x$
(vi) $9 x^{2}+4 y^{2}+z^{2}-12 x y-4 y z+6 z x$
10. (i) दर्शाओ : $(a+b)^{2}=(a-b)^{2}+4 a b$
(ii) दर्शाओ : $(\mathrm{a}+\mathrm{b})^{2}+(\mathrm{a}-\mathrm{b})^{2}=2\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)$
(iii) दर्शाओ : $\left(\frac{a+b}{2}\right)^{2}-\left(\frac{a-b}{2}\right)^{2}=a b$
(iv) दर्शाओ : $(2 \mathrm{a}+\mathrm{b})^{2}-(2 \mathrm{a}-\mathrm{b})^{2}=8 \mathrm{ab}$
(v) दर्शाओ : $(3 x-2 y)^{2}+12 x y=9 x^{2}+4 y^{2}$

सूचना : सर्वसामिक का (i) और सर्वसामिका (ii) का उपयोग करके उपर्युक्त सर्वसामिकाओं को ज्ञात करो । 000

अध्याय 4

3.1. भूमिका (Introduction) :

तुम पिछली कक्षा में प्राकृत संख्याओं का गुणनखंड (factors) ज्ञात करने की विधि जान चुके हो । तुम्हें इनका व्यवहार करके संख्याओं का महत्तम समापवर्तक और लघुतम समापवर्त्य ज्ञात करने की विधि भी ज्ञात है । प्राकृत संख्या को कई अभाज्य गुणनखंडों के रूप में लिखा जा सकता है । इस विधि को गुणनखंडन कहते हैं 1 जैसे-
$30=1 \times 30=2 \times 15=5 \times 6=2 \times 3 \times 5$
अतएव 30 के अभाज्य गुणनखंड है - $1,2,3,5,6,10,15$ और 30 । इनमें से 2,3 और 5 अभाज्य गुणनखंड हैं । अतएव 30 को अभाज्य गुणनखंडो के गुणनफल के रूप में प्राप्त करने के लिए हम लिखेंगे : $30=2 \times 3 \times 5$

यहाँ याद रखान पड़ेगा कि किसी भाज्य संख्या को कई अभाज्य संख्याओं के गुणनखंडों के रूप में व्यक्त किया जाता है । जैसे $-30=2 \times 3 \times 5,42=2 \times 3 \times 7$ आदि ।

हम इस अध्याय में दो या दो से अधिक पद वाले बीजीय व्यंजकों के गुणनखंडन के लिए प्रयुक्त विभिन्न विधिओं के संबंध में चर्चा करेंगे ।

4.2 गुणनखंड (factors) और गुणनखंडन (factorisation) :

दो या दो से अधिक पदीय बीजीय व्यंजकों के गुणनखंड की चर्चा करने से पहले हम पहले एक पद में मिले विभिन्न गुणनखंड़ो का चर्चा करेंगे । ध्यानदो $2 \mathrm{a}^{2} \mathrm{bc}$ एकपदीय बीजीय व्यंजक है । यहाँ $2 \mathrm{a}^{2} \mathrm{bc}=2 \mathrm{a} \times \mathrm{a} \times \mathrm{b} \times \mathrm{c}$ है ।

इस व्यंजक $2 \mathrm{a}^{2} \mathrm{bc}$ का $2, \mathrm{a}, \mathrm{b}$ और c एक एक गुणनखंड हैं । इसी प्रकार $5 \mathrm{xy}=5 \times \mathrm{x} \times \mathrm{y}$ होने से $5, \mathrm{x}, \mathrm{y}$ प्रत्येक $5 x y$ के एक-एक गुणनखंड है ।

कोई बीजीय व्यंजक कुछ अभाज्य संख्याओं और कुछ बीजीय व्यंजकों के गुणनफल के बराबर होने पर उन संख्याओं और उत्पन्न व्यंजकों को मूल व्यंजक का एक-एक गुणनखंड कहते हैं ।

गुणनखंडन एक प्रक्रिया है जिसमें दिए गए बीजीय व्यंजक को केवल अभाज्य संख्या, बीजीय चरों के गुणनफल के रूप में व्यक्त किया जा सकेगा । बीजीय व्यंजकों में ‘अभाज्य' शब्द के स्थान पर शब्द अखंडनीय (irrductible) का प्रयोग होता है ।

4.2.1 वितरण नियम का प्रयोग करके गुणनखंड का विश्लेषण :

परिमेय संख्या सेट में वितरण नियम है :
$x(a+b)=x a+x b$
हम यह भी लिख सकते हैं : $\mathrm{xa}+\mathrm{xb}=\mathrm{x}(\mathrm{a}+\mathrm{b})$
हम व्यजंक $x(a+b)$ में x एक गुणनखंड है और $a+b$ दूसरा गुणनखंड है ।
वितरण नियम भी दो से अधिक पदीया व्यंजको के लिए भी प्रयुक्त होता है ।
जैसे $\mathrm{xa}+\mathrm{xb}+\mathrm{xc}=\mathrm{x}(\mathrm{a}+\mathrm{b}+\mathrm{c})$ है ।

याद रखो :

(i) पदों का कोई अभयनिष्ठ गुणनखंड न होने पर यह विधि प्रयुज्य नहीं होती ।
(ii) द्विपद, त्रिपद या बहुपदीय व्यंजक भी गुणनखंड हो सकते हैं ।
(iii) उभयनिष्ठ सार्व गुणनखंड, एक संख्या या बीजीय व्यंजक हो सकते हैं । जैसे : a, b, c, x, y, z आदि ।

उदाहरण 1:2x+4 के गुणनखंड ज्ञात करो ।
हल : $2 \mathrm{x}+4=2(\mathrm{x}+2)$ (वितरण नियम)
उदाहरण $2: 12 \mathrm{a}^{2} \mathrm{~b}+15 \mathrm{ab}^{2}$ के गुणनखंड ज्ञात करो ।
हल : $12 \mathrm{a}^{2} \mathrm{~b}+15 \mathrm{ab}^{2}=3 \mathrm{ab}(4 \mathrm{a}+5 \mathrm{~b})$
यहाँ 3 ab और $4 \mathrm{a}+5 \mathrm{~b}$ का गुणनफल $12 \mathrm{a}^{2} \mathrm{~b}+15 \mathrm{ab}^{2}$ के बराबर है । अतएव $3, \mathrm{a}, \mathrm{b}$ और $(4 \mathrm{a}+5 \mathrm{~b})$ प्रत्येक $12 \mathrm{a}^{2} \mathrm{~b}+15 \mathrm{ab}^{2}$ की एक एक गुणनखंड हैं ।

उदाहरण 3: $\mathrm{a}^{2} \mathrm{bc}+\mathrm{ab}^{2} \mathrm{c}+\mathrm{abc} \mathrm{c}^{2}$ के गुणनखंड ज्ञात करो ।
हल : $\mathrm{a}^{2} \mathrm{bc}+\mathrm{ab}^{2} \mathrm{c}+\mathrm{abc} c^{2}=\mathrm{a} \times \mathrm{b} \times \mathrm{c}(\mathrm{a}+\mathrm{b}+\mathrm{c})=\mathrm{abc}(\mathrm{a}+\mathrm{b}+\mathrm{c})$
यहाँ $\mathrm{a}, \mathrm{b}, \mathrm{c},(\mathrm{a}+\mathrm{b}+\mathrm{c}), \mathrm{a}^{2} \mathrm{bc}+\mathrm{ab}^{2} \mathrm{c}+\mathrm{abc}^{2}$ के एक-एक गुणनखंड हैं ।

उदाहरण 4 : $14 \mathrm{x}^{4}-18 \mathrm{x}^{3}+10 \mathrm{x}^{2}$ के गुणनखंड ज्ञात करो ।
हल : $14 \mathrm{x}^{4}-18 \mathrm{x}^{3}+10 \mathrm{x}^{2}=2 \mathrm{x}^{2}\left(7 \mathrm{x}^{2}-9 \mathrm{x}+5\right)$
उदाहरण 5 : गुणनखंड ज्ञात करो :
(i) $2 x(a-b)+3 y(a-b)$
(ii) $2 \mathrm{a}(\mathrm{x}-\mathrm{y})+5 \mathrm{~b}(\mathrm{y}-\mathrm{x})$

हल : $2 \mathrm{x}(\mathrm{a}-\mathrm{b})+3 \mathrm{y}(\mathrm{a}-\mathrm{b})$
$=(\mathrm{a}-\mathrm{b})(2 \mathrm{x}+3 \mathrm{y}$ (यहाँ सार्व गुणनखंड $(\mathrm{a}-\mathrm{b})$ है ।)
(ii) $2 \mathrm{a}(\mathrm{x}-\mathrm{y})+5 \mathrm{~b}(\mathrm{y}-\mathrm{x})=2 \mathrm{a}(\mathrm{x}-\mathrm{y})+5 \mathrm{~b}\{-(\mathrm{x}-\mathrm{y})\}$
$=2 \mathrm{a}(\mathrm{x}-\mathrm{y})-5 \mathrm{~b}(\mathrm{x}-\mathrm{y}\}=(\mathrm{x}-\mathrm{y})(2 \mathrm{a}-5 \mathrm{~b})$
(ध्यान दो : $(y-x)=-x+y=-(x-y)$ है ।)
अभ्यास 4 (a)

1. गुणनखंड ज्ञात करो :
(1) $12 x+36$
(2) $8 a+4 b$
(3) $22 y-33 z$
(4) $15 \mathrm{pq}+35 \mathrm{pqr}$
(5) $10 a^{2} b+5 a$
(6) $15 a^{2} b c-10 a b^{2} c$
(7) $8 a^{3}+4 a^{2}+2 a$
(8) $30 \mathrm{a}^{3} \mathrm{~b}^{3} \mathrm{c}^{3}+25 \mathrm{a}^{5} \mathrm{~b}^{3} \mathrm{c}^{6}-15 \mathrm{a}^{6} \mathrm{~b}^{6} \mathrm{c}^{6}$
(9) $7(2 x+5)+3(2 x+5)$
(10) $5 \mathrm{a}(2 \mathrm{x}+3 \mathrm{y})-2 \mathrm{~b}(2 \mathrm{x}+3 \mathrm{y})$
(11) $8(5 x+9 y)^{2}+12(5 x+9 y)$
(12) $9 \mathrm{a}(6 \mathrm{a}-5 \mathrm{~b})-12 \mathrm{a}^{2}(6 \mathrm{a}-5 \mathrm{~b})$
(13) $5(x-2 y)^{2}+3(x-2 y)$
(14) $6(a+2 b)-4(a+2 b)^{2}$
(15) $a(a-1)+b(a-1)$
(16) $(x-y)^{2}+(x-y)$
(17) $a(x-y)+2 b(y-x)+c(x-y)$
(18) $a(b-c)+b(b-c)+c(b-c)$
(19) $x^{3}(a-2 b)+x^{2}(a-2 b)$
(20) $4(x+y)(3 a-b)+6(x+y)(2 b-3 a)$
(21) $(2 x-3 y)(a+b)+(3 x-2 y)(a+b)$
(22) $a^{2}(x+y)+b^{2}(x+y)+x^{2}(x+y)$

4.2.2 व्यंजकों को दो या उससे अधिक भागों में बांटकर गुणनखंड निरूपण :

(Factorisation by grouping method :

चार या उससे अधिक पदों के व्यंजकों का गुणनखंड इस विधि से निरूपित हो सकेगा । यहाँ बीजीय व्यंजकों को ऐसे दो या उससे अधिक भागों से बाँटा जाएगा, जैसे प्रत्येक भाग से एक सार्व गुणनखंड मिल सकेगा । आवश्यकता पड़ने पर हम पदों को पुन: समूहन करेंगे ।

उदाहरण 6 : गुणनखंड ज्ञात करो ।

(i) $a x+b y+b x+a y$
(ii) $3 m-6 n-a m+2 a n$

हल : इन व्यंजकों को देखने से पता चलता है कि इसका सार्व गुणनखंड नहीं है । लेकिन पदों को भिन्न प्रकार से पुन: समूहन बना देने से व्यंजकों का सार्व गुणनखंड तय करना आसान हो जाएगा ।
(i) $a x+b y+b x+a y=a x+b x+b y+a y$

यहाँ x वाले पदो को एक साथ और y वाले पदों को एक साथा रखा गया ।)
$=x(a+b)+y(a+b)=(a+b)(x+y)$
विकल्प विधि : चारों पदों में से ' a ' पदवालों को अलग और b पद वालों को अलग रखकर गुणनखंड ज्ञात किया जा सकता है $1 a x+b y+b x+a y=a x+a y+b x+b y=a(x+y)+b(x+y)=(x+y)(a+b)$
(ii) $3 \mathrm{~m}-6 \mathrm{n}-\mathrm{am}+2 \mathrm{an}=3(\mathrm{~m}-\mathrm{n})-\mathrm{a}(\mathrm{m}-\mathrm{n})=(\mathrm{m}-\mathrm{n})(3-\mathrm{a})$
(यहाँ प्रथम और तृतीय पदों को एक साथ तथा द्वितीय और चतुर्थ पदों को एक साथ रखकर गुणनखंड ज्ञात किया जा सकता है । प्रयास करो ।)
उदाहरण 7 : गुणनखंड ज्ञात करो ।
(i) $2 x y+3+2 y+3 x$
(ii) $6 x y-4 y+6-9 x$

हल :
(i) $2 x y+3+2 y+3 x=2 x y+2 y+3 x+3$

$$
=2 y(x+1)+3(x+1)=(x+1)(2 y+3)
$$

(ii) $6 x y-4 y+6-9 x=6 x y-9 x-4 y+6$

$$
\begin{aligned}
& =3 x(2 y-3)-2(2 y-3) \\
& =(2 y-3)(3 x-2)=(3 x-2)(2 y-3)
\end{aligned}
$$

अभ्यास 4 (b)

गुणनखंड ज्ञात करो :

1. $x^{2}+x y+8 x+8 y$
2. $a b+d b+a c+d c$
3. $15 x y-6 x+5 y-2$
4. $15 p q+15+9 q+25 p$
5. $a^{2}+2 a+a b+2 b$
6. $\mathrm{a}^{2}+\mathrm{bc}-\mathrm{ba}-\mathrm{ac}$
7. $x^{2}-3 x+2 x-6$
8. $x^{2}-y^{2}+x-x y^{2}$
9. $x^{3}-2 x^{2} y+3 x y^{2}-6 y^{3}$
10. $x^{2}-11 x y-x+11 y$
11. $\mathrm{pq}+\mathrm{qr}+\mathrm{q}^{2}+\mathrm{qr}$
12. $\mathrm{pq}+\mathrm{qr}+\mathrm{pr}+\mathrm{r}^{2}$
13. $a x+b x-a y-b y$
14. $2 a+6 b-3(a+3 b)^{2}$
15. $x^{2}-x z+x y-y z$
16. $2 \mathrm{p}^{2}-\mathrm{pq}-2 \mathrm{pr}+\mathrm{qr}$
17. $2 \mathrm{x}^{2}-5 \mathrm{x}+4 \mathrm{x}-10$
18. $1 m^{2}-m n^{2}-1 m+n^{2}$
19. $6 a b-b^{2}+12 a c-2 b c$
20. $3 a x-6 a y-8 b y+4 b x$

4.3 द्विघाती बीजीय व्यंजकों के गुणनखंड निरूपण करने की विधि :

द्वितीय बीजीय व्यंजक है : $\mathrm{x}^{2}+\mathrm{px}+\mathrm{q}$
इसके बीच का पद px है । इसके x चर है और p संख्यात्मक गुणांक है ।
तुम जानते हो : $(x+a)(x+b)=x^{2}+(a+b) x+a b$
पलटकर लिखे तो होगा : $x^{2}+(a+b) x+a b=(x+a)(x+b)$
यदि व्यंजक $\mathrm{x}^{2}+\mathrm{px}+\mathrm{q}$ के रूप में हो, तब हम p को $(\mathrm{a}+\mathrm{b})$ के रूप में तोड़ेंगे । जैसे कि $\mathrm{q}=\mathrm{ab}$ हो । यहाँ व्यंजक के गुणनखंड होंगे- $(x+a)(x+b)$ । गुणनखंड प्राप्त करने के लिए निम्न चरणों को लेंगे ।
(i) द्विघाती व्यंजक को अज्ञात पद के घटते क्रम से रखना होगा ।
(ii) ऐसी दो संख्याएँ निरूपित करनी होगी, जिसका योगफल बीच के पद के संख्यात्मक गुणांक के बराबर हो । गुणनफल तीसरे पद के बराबर हो ।
(iii) अब बीचे के पद को आवश्यकानुसार दो पदों में बाँट देंगे ।
(iv) अब चार पदीय व्यंजक का गुणनखंड पूर्व की विधि से ज्ञात करेंगे ।

उदाहरण 8 : गुणनखंड ज्ञात करो ।

(i) $\mathrm{x}^{2}+9 \mathrm{x}+20$
(ii) $y^{2}-7 y+12$
(iii) $\mathrm{x}^{2}-\mathrm{x}-30$

हल : (i) $\mathrm{x}^{2}+9 \mathrm{x}+20$ को $\mathrm{x}^{2}+\mathrm{px}+\mathrm{q}$ के रूप में व्यक्त करेंगे ।
(यहाँ $\mathrm{p}=9$ और $\mathrm{q}=20$ है । हम ऐसी दो संख्याएँ चुनेंगे जिनका योगफल 9 हो और गुणनफल 20 हो । कोशिश करने पर हम जान सकेंगे कि ये दोनों संख्याएँ हैं - 4 और 5 । इनका गुणनफल धनात्मक है । योगफल भी धनात्मक होगा ।

$$
\begin{align*}
\therefore x^{2}+9 x+20 & =x^{2}+(4+5) x+4 \times 5 \ldots \ldots \ldots \ldots \ldots \ldots ~ \tag{i}
\end{align*}
$$

चरण (i) से हम सीधे दोनों गुणनखंडों को लिख सकेंगे ।
(ii) $\mathrm{y}^{2}-7 \mathrm{y}+12$
(यहाँ $\mathrm{p}=-7$ और $\mathrm{q}=12$ हैं । हम ऐसी दो संख्याएँ चुनेंगे, जिनका योगफल -7 और गुणनफल 12 हो । यहाँ गुणनफल धनात्मक है । अतएव दोनों पद ऋणात्मक होंगे । ये हैं : -4 और -3 ।

$$
\begin{aligned}
\therefore y^{2}-7 y+12 & =y^{2}+\{(-4)+(-3)\} y+(-4)(-3) \ldots(\text { ii }) \\
& =y^{2}-4 y-3 y+12=y(y-4)-3(y-4)=(y-4)(4-3)
\end{aligned}
$$

हम चरण (ii) से सीधे गुणनखंडों दोनों को अर्थात् $(\mathrm{y}-4)$ और $(\mathrm{y}-3)$ को लिख सकेंगे ।
(iii) $\mathrm{x}^{2}-\mathrm{x}-30$
(यहाँ गुगनफल -30 होगा । योगफल (-1) होगा । आवश्यक संख्या द्वयं हैं : -6 और 5 हो ।

$$
\begin{aligned}
x^{2}-x-30 & =x^{2}+\{(-6)+5\} x+(-6) \times 5 \\
& =x^{2}-6 x+5 x-30=x(x-6)+5(x-6)=(y-6)(x+5)
\end{aligned}
$$

अभ्यास 4 (c)

गुणनखंड ज्ञात करो :

1. (i) $a^{2}+8 a+15$
(ii) $x^{2}+5 x+6$
(iii) $x^{2}+7 x+6$
(iv) $x^{2}+8 x+12$
(v) $x^{2}+11 x+24$
(vi) $x^{2}+2 x+1$
2. (i) $\mathrm{p}^{2}-10 \mathrm{p}+24$
(ii) $\mathrm{x}^{2}-8 \mathrm{x}+12$
(iii) $x^{2}-7 x+10$
(iv) $x^{2}-9 x+14$
(v) $x^{2}+4 x-21$
(vi) $x^{2}-3 x+2$
3. (i) $a^{2}-4 a-5$
(ii) $x^{2}-11 x-42$
(iii) $x^{2}-4 x-21$
(iv) $\mathrm{x}^{2}-\mathrm{x}-90$
(v) $x^{2}-2 x-63$
(vi) $x^{2}-x-2$
4. (i) $(a+1)^{2}+16(a+1)+60$

सूचना : $(a+1)$ को p मानकर दिए गए व्यंजकों को लिखने से होगा : $p^{2}+16 p+60$ । इसके बाद गुणनखंड ज्ञात किया जा सकता है ।
(ii) $(a+3)^{2}-14(a+3)+45$
(iii) $(x-2)^{2}+2(x-2)-8$
5. (i) $(a+7)-(a-10)+16$
(ii) $\quad(x-2 y)^{2}-2(x-2 y)+6$

4.4 विभिन्न सर्वसमिकाओं की सहायता से गुणनखंड का निरूपण(Factorisation using different Indetities) :

 पहले के अध्याय में तुम्हें कुछ सर्वसमिकाओं की अवधारण प्राप्त हुई है । उन्हें याद करो । गुणनखंड प्राप्त करने के लिए आवश्यक सर्वसमिकाएँ निम्न प्रकार की है :(i) $\mathrm{a}^{2}+2 \mathrm{ab}+\mathrm{b}^{2}=(\mathrm{a}+\mathrm{b})^{2}$
(ii) $\mathrm{a}^{2}-2 \mathrm{ab}+\mathrm{b}^{2}=(\mathrm{a}-\mathrm{b})^{2}$
(iii) $\mathrm{a}^{2}-\mathrm{b}^{2}=(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})$
(iv) $\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}+2 \mathrm{ab}+2 \mathrm{bc}+2 \mathrm{ca}=(\mathrm{a}+\mathrm{b}+\mathrm{c})^{2}$
(v) $\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}-2 \mathrm{ab}-2 \mathrm{bc}+2 \mathrm{ca}=(\mathrm{a}-\mathrm{b}+\mathrm{c})^{2}$
(vi) $\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}+2 \mathrm{ab}-2 \mathrm{bc}-2 \mathrm{ca}=(\mathrm{a}+\mathrm{b}-\mathrm{c})^{2}$
(vii) $\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}-2 \mathrm{ab}+2 \mathrm{bc}-2 \mathrm{ca}=(\mathrm{a}-\mathrm{b}-\mathrm{c})^{2}$

वितरण के नियम का व्यवहार करके उक्त सर्वसमिकाओं को सत्यापित किया जा सकेगा ।

उदाहरण 9: $x^{2}+6 x y+9 y^{2}$ के गुणनखंड ज्ञात करो ।

हल : $x^{2}+6 x y+9 y^{2}=x^{2}+2 . x .3 y+(3 y)^{2}$

$$
\begin{equation*}
=(x+3 y)^{2}=(x+3 y)(x+3 y) \tag{सर्वसमिका1}
\end{equation*}
$$

उदाहरण $10: 4 \mathrm{a}^{2}-4 a b+b^{2}$ के गुणनखंड ज्ञात करो ।
हल :
$4 a^{2}-4 a b+b^{2}=(2 a)^{2}-2(2 a) b+b^{2}=(2 a-b)^{2}$

$$
=(2 a-b)(2 a-b)
$$

(सर्वसमिका 2)
उदाहरण $11: 9 x^{2}+4 y^{2}+z^{2}+12 x y+6 x y+4 z x$ के गुणनखंड ज्ञात करो ।
हल : $\quad 9 x^{2}+4 y^{2}+z^{2}+12 x y+6 x z+4 y z$
$=(3 x)^{2}+(2 y)^{2}+z^{2}+2 \cdot 3 x \cdot 2 y+2 \cdot 2 y \cdot z+2 \cdot 2 y \cdot z$
$=(3 x+2 y+z)^{2}=(3 x+2 y+z)(3 x+2 y+z)$
(सर्वसमिका 4)
उदाहरण $12: 4 \mathrm{x}^{2}+9 \mathrm{y}^{2}+\mathrm{z}^{2}-4 \mathrm{xz}-12 \mathrm{xy}+6 \mathrm{yz}$ के गुणनखंड ज्ञात करो ।
हल : $4 \mathrm{x}^{2}+9 \mathrm{y}^{2}+\mathrm{z}^{2}-4 \mathrm{xz}-12 \mathrm{xy}+6 \mathrm{yz}$
$=(2 x)^{2}+(3 y)^{2}+z^{2}-2 \cdot 2 x \cdot z-2 \cdot 2 x \cdot 3 y+2 \cdot 3 y \cdot z$
$=(2 x-3 y-z)^{2}=(2 x-3 y-z)(2 x-3 y-z)$
(सर्वसमिका 7)
उदाहरण 13: $9 \mathrm{x}^{2}-16 \mathrm{y}^{2}$ के गुणनखंड ज्ञात करो ।
हल : $\quad 9 \mathrm{x}^{2}-16 \mathrm{y}^{2}=(3 \mathrm{x})^{2}-(4 \mathrm{y})^{2}$
$=(3 \mathrm{x}+4 \mathrm{y})(3 \mathrm{x}-4 \mathrm{y})$
(सर्वसमिका 3)
उदाहरण $14: \mathrm{a}^{2}+2 \mathrm{ab}+\mathrm{b}^{2}-4 \mathrm{c}^{2}$ के गुणनखंड ज्ञात करो ।
हल : $\mathrm{a}^{2}+2 \mathrm{ab}+\mathrm{b}^{2}-4 \mathrm{c}^{2}$

$$
\begin{aligned}
& =(a+b)^{2}-(2 c)^{2}=(a+b)^{2}-(2 c)^{2} \\
& =(a+b+2 c)(a+b-2 c)
\end{aligned}
$$

उदाहरण 15 : दो पूर्ण वर्गे के अंतर के रूप में व्यक्त करके गुणनखंड ज्ञात करो ।
(i) $x^{2}-2 x-323$
(ii) $\mathrm{x}^{2}+6 \mathrm{x}-4087$

हल : (i) $x^{2}-2 x-323=x^{2}-2 \cdot x \cdot 1+(1)^{2}-(1)^{2}-323$

$$
\begin{align*}
& =(x-1)^{2}-324=(x-1)^{2}-(18)^{2} \\
& =(x-1+18)(x-1-18) \tag{सर्वसमिका2}\\
& =(x+17)(x-19) \tag{सर्वसमिका3}
\end{align*}
$$

(ii) $\mathrm{x}^{2}+6 \mathrm{x}-4087$
$=x^{2}+2 . \mathrm{x} \cdot 3+(3)^{2}-(3)^{2}-4087$

$$
\begin{array}{ll}
=(x+3)^{2}-4096=(x+3)^{2}-(64)^{2} & \text { (सर्वसमिका 1) } \\
=(x+3+64)(x+3-64)=(x+67)(x-61) & (\text { सर्वसमिका 3) }
\end{array}
$$

उदाहरण $16: \mathrm{a}^{4}+4 \mathrm{~b}^{4}$ के गुणनखंड ज्ञात करो ।

हल : $a^{4}+4 b^{4}=\left(a^{2}\right)^{2}+(2 b)^{2}=\left(a^{2}\right)^{2}+(2 b)^{2}+2 \cdot a^{2} \cdot(2 b)^{2}-2 \cdot a^{2} \cdot(2 b)^{2}$

$$
\begin{align*}
& =\left(a^{2}+2 b^{2}\right)^{2}-4 a^{2} b^{2} \tag{सर्वसमिका1}\\
& =\left(a^{2}+2 b^{2}\right)^{2}-(2 a b)^{2} \\
& =\left(a^{2}+2 a b+2 b^{2}\right)\left(a^{2}-2 a b+2 b^{2}\right)
\end{align*}
$$

(सर्वसमिका 3)
अभ्यास 4 (d)
सूत्रों का प्रयोग करके गुणनखंड ज्ञात करो : (नं 1 से नं 7 तक)

1. (i) $4 x^{2}+4 x+1$
(ii) $9 b^{2}+12 b c+4 c^{2}$
(iii) $16 a^{2}+40 a b+25 b^{2}$
(iv) $49 x^{2}+112 x y+64 y^{2}$
(v) $a^{4}+6 a^{2} b^{2}+9 b^{4}$
2. (i) $9 x^{2}-6 x+1$
(ii) $16 x^{2}-40 x y+25 y^{2}$
(iii) $49 a^{2}-126 a b+81 b^{2}$
(iv) $64 a^{2}-16 a+1$
(v) $100 a^{4}-20 a^{2} b+b^{2}$
3. (i) $16 x^{2}+9 y^{2}+25 z^{2}+24 x y+40 x z+30 y z$
(ii) $9 x^{2}+25 y^{2}+z^{2}+70 x y+10 z y+14 x z$
(iii) $4 a^{2}+9 b^{2}+c^{2}+12 a b+4 a c-6 b c$
(iv) $100 \mathrm{a}^{2}+81 \mathrm{~b}^{2}+49 \mathrm{c}^{2}-180 \mathrm{ab}-140 \mathrm{ac}+126 \mathrm{bc}$
(v) $x^{4}+y^{2}+z^{2}--2 x^{2} y-2 x^{2} z+2 y z$
4. (i) $16 a^{2}-9 b^{2}$
(ii) $25 \mathrm{a}^{2}-36 \mathrm{~b}^{2}$
(iii) $81 \mathrm{a}^{2}-100 \mathrm{~b}^{2}$
(iv) $16 a^{2}+49 b^{2}$
(v) $144 a^{2}-225 b^{2}$
(vi) $256 a^{2}-289 b^{2}$
(vii) $400 \mathrm{a}^{2}-225 \mathrm{~b}^{2}$
(viii) $441 \mathrm{a}^{2}-900 \mathrm{~b}^{2}$
(ix) $121 \mathrm{a}^{2}-289 \mathrm{~b}^{2}$
(x) $81 \mathrm{a}^{2}-361 \mathrm{~b}^{2}$
(xi) $(a+b)^{2}-c^{2}$
(xii) $(a)^{2}-(b-c)^{2}$
5. (i) $a^{4}+a^{2}+1$
(ii) $4 x^{4}+1$
(iv) $x^{4}+9 x^{2} y^{2}+81 y^{4}$
(v) $x^{4}+16 x^{2}+256$
6. (i) $a^{2}+6 a+9-b^{2}$
(ii) $a^{2}-4 a+4-c^{2}$
(iii) $4 a^{2}-4 a+1-9 b$
(iv) $\mathrm{a}^{2}-6 \mathrm{ab}+9 \mathrm{~b}^{2}-16 \mathrm{c}^{2}$
(v) $16 \mathrm{a}^{2}-24 \mathrm{ab}+9 \mathrm{~b}^{2}-25 \mathrm{c}^{2}$
(iii) $x^{4}+36 x^{2} y^{2}+1296 y^{4}$

7. दो पूर्ण वर्गों के अंतर के रूप में व्यक्त करो :

(i) $\mathrm{x}^{2}-2 \mathrm{x}-195$
(ii) $\mathrm{x}^{2}+4 \mathrm{x}-357$
(iii) $\mathrm{x}^{2}+6 \mathrm{x}--112$
(iv) $\mathrm{x}^{2}+2 \mathrm{x}-899$
(v) $x^{2}-4 x-621$
(vi) $x^{2}-10 x-171$
(vii) $x^{2}-6 x-891$
(viii) $x^{2}+4 x-192$

सूचक तत्व (THEORY OF INDICES)

अध्याय

 5
3.1. भूमिका (Introductin) :

पिछली कक्षा में तुम परिमेय संख्या या पूर्णांक आधार तथा प्राकृत संख्या के घातवाली संख्या के बारे में पढ़ चुके हो । तुम्हें घातीय संख्याओं के नियम भी मालूम है । इस अध्याय में हम पूर्णांक घातांक तथा परिमेय संख्या के घातांक वाली संख्या के संबंध में चर्चा करेंगे और इनसे संबंधित नियमों की चर्चा भी करेंगे ।

हम जानते हैं कि $5 \times 5 \times 5=5^{3}$ है । यहाँ 5^{3} घात वाली संख्या है । 5 और 3 क्रमशः संख्या के आधार और घातांक हैं । उसी प्रकार $(-2) \times(-2) \times(-2) \times(-2)=(-2)^{4}$ । यहाँ $(-2)^{4}$ घात संख्या है । -2 और 4 क्रमश: आधार और घातांक हैं । याद रखना चाहिए कि :
$a \times a \times a \times$ \qquad . m बार $=\mathrm{a}^{\mathrm{m}}$ है । a एक पूर्णांक है या परिमेय संख्या है । m एक प्राकृत संख्या है । $(\mathrm{a})^{\mathrm{m}}$ एक घात संख्या है । a आधार है m घातांक है ।

5.2 धनात्मक पूर्णांक घातांक वाली घात संख्या :

इस अध्याय में पूर्णांक और परिमेय संख्या के घातांक वाली संख्या के बारे में चर्चा करने से पहले प्राकृत संख्या (धनात्मक पूर्णांक) घातांक वाली संख्या पर चर्चा करेंगे ।

प्रत्येक घात संख्या (प्राकृत संख्या घातांक वाली) का मान रहता है ।
जैसे : $2^{3}=2 \times 2 \times 2=8,(-4)^{2}=(-4)(-4)=16$
$\left(\frac{1}{3}\right)^{5}=\frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3}=\frac{1}{243}$
$\left(-\frac{2}{3}\right)^{4}=\left(\frac{-2}{3}\right) \times\left(\frac{-2}{3}\right) \times\left(\frac{-2}{3}\right) \times\left(\frac{-2}{3}\right)=\frac{(-2)^{4}}{(3)^{4}}=\frac{16}{81}$ आदि ।

खुद करो :

1. निम्नलिखित संख्याओं को घातांक रूप में लिखो :
(a) 625
(b) -27
(c) 243
(d) 1000
(e) $\frac{4}{9}$
2. निम्न घातांकों का मान ज्ञात करो :
(a) 6^{3}
(b) $(-8)^{3}$
(c) $(12)^{2}$
(d) $(-11)^{3}$
(e) $\left(\frac{-1}{5}\right)^{3}$
3. निम्न संख्याओं को x^{n} (घात संख्या) के रूप में व्यक्त करो :
(i) $2 \times 2 \times 2 \times 2$
(ii) $(-2) \times(-2) \times(-2) \times(-2) \times(-2)$
(iii) $\left(\frac{3}{4}\right) \times\left(\frac{3}{4}\right) \times\left(\frac{3}{4}\right)$
(iv) $\left(-\frac{1}{7}\right)\left(-\frac{1}{7}\right)\left(-\frac{1}{7}\right)\left(-\frac{1}{7}\right)$
(v) $\frac{5}{3} \times \frac{5}{3} \times \frac{5}{3}$
(vi) $y \times y \times y \times y \times y$
(vii) (-p) (-p) (-p)
(viii) (a-b) (a-b) (a-b) (a-b)
(ix) $(\mathrm{a}+\mathrm{b})(\mathrm{a}+\mathrm{b})(\mathrm{a}+\mathrm{b})$
(x) $\left(\frac{a}{b}\right)\left(\frac{a}{b}\right)\left(\frac{a}{b}\right)\left(\frac{a}{b}\right)\left(\frac{a}{b}\right)$
4. निम्न घातों के आधार और घातांक दर्शाकर उनका मान ज्ञात करो :
(i) $(1)^{15}$
(ii) $(-1)^{11}$
(iii) $(-1)^{18}$
(iv) $(9)^{5}$
(v) $(-2)^{5}$
(vi) $\left(\frac{1}{6}\right)^{6}$
(vii) $\left(\frac{2}{3}\right)^{5}$
(viii) $(5 \times 2)^{4}$
(ix) $(10)^{7}$
(x) $(-10)^{5}$
5. निम्न सारणी के शून्यस्थान भरो :

आधार	2	-3			7	4	$\frac{-1}{2}$	
घातांक	6	6	5	4			7	5
मान			32	625	2401	1024		$\frac{-1}{243}$

4. निम्न प्रश्नों के उत्तर दो :
(i) 10 का चौथा घातांक ज्ञात करो ।
(ii) 5 का कौन-सा घातांक 625 है ?
(iii) $\frac{1}{8}, \frac{1}{2}$ का कौन-सा घातांक है ?
(iv) किस आधार का तीसरा घातांक $\frac{-27}{8}$ है ?
5. निम्न प्रश्नों के उत्तर दो :
(i) $\frac{2}{3}$ आधार का छठवीं घात, $\frac{4}{3}$ आधार की किस घात के बराबर है ?
(ii) 5 आधार का चौथी घात, किस आधार की दूसरी घात के बराबर है ?
(iii) 256 जिस आधार की चौथी घात है, उसकी तीसरी घात कितनी है ?

5.3 घातों का गुणा और भाग :

तुमने प्राकृत संख्या, घातांक वाली घातों के नियमों को पढ़ा है । आओ, उन्हें फिर से याद करें । हम मुख्यत:
गुणा और भाग के बारे में चर्चा करेंगे ।
नियम $1: a$ एक शून्येतर परिमेय संख्या हो और m तथा n दो प्राकृत संख्याएँ हो तो $a^{m} \times a^{n}=a^{m+n}$ होगा ।
उदाहरण $1: 2^{3} \times 2^{4}$ को घात संख्या में व्यक्त करो ।
हल : $2^{3} \times 2^{4}=2^{3+4}=2^{7}$
(नियम 1)
उदाहरण 2 : $\left(\frac{2}{3}\right)^{2} \times\left(\frac{2}{3}\right)^{3}$ को घात संख्या में व्यक्त करो ।
हल : $\left(\frac{2}{3}\right)^{2} \times\left(\frac{2}{3}\right)^{3}=\left(\frac{2}{3}\right)^{2+3}=\left(\frac{2}{3}\right)^{5}$
(नियम 1)
नियम 2 : (i) a एक शून्येतर परिमेय संख्या और m तथा n दो प्राकृत संख्याएँ हों $I(m>n)$ तो $a^{m} \div a^{n}=a^{m-n}$ होगा ।
(ii) a एक शून्येतर परिमेय संख्या और m तथा n दो प्राकृत संख्याएँ हो $l(n>m)$ तो

$$
\mathbf{a}^{\mathbf{m}} \div \mathbf{a}^{\mathrm{n}}=\frac{1}{\mathbf{n}-\mathbf{m}} \text { होगा । }
$$

उदाहरण 3 : $\left(\frac{4}{3}\right)^{7} \div\left(\frac{4}{3}\right)^{4}$ को घात संख्या में व्यक्त करो ।
हल : $\left(\frac{4}{3}\right)^{7} \div\left(\frac{4}{3}\right)^{4}=\left(\frac{4}{3}\right)^{7-4}=\left(\frac{4}{3}\right)^{3}$
उदाहरण 4 : $\left(\frac{4}{3}\right)^{2} \div\left(\frac{4}{3}\right)^{5}$ को घात संख्या में व्यक्त करो ।
हल : $\left(\frac{4}{3}\right)^{2} \div\left(\frac{4}{3}\right)^{5}=\frac{1}{\left(\frac{4}{3}\right)^{5-2}}=\frac{1}{\left(\frac{4}{3}\right)^{3}}$
नियम 3: a एक शून्येतर परिमेय संख्या और m तथा n दो प्राकृत संख्याएँ हों । तब $\left(\mathbf{a}^{\mathrm{m}}\right)^{\mathrm{n}}=\mathbf{a}^{\mathrm{mn}}$ होगा ।
उदाहरण $5:\left\{\left(\frac{2}{3}\right)^{3}\right\}^{2}$ को घात संख्या में व्यक्त करो ।
हल : $\left\{\left(\frac{2}{3}\right)^{3}\right\}^{2}=\left(\frac{2}{3}\right)^{3 \times 2}=\left(\frac{2}{3}\right)^{6}$
नियम 4: \mathbf{a} और \mathbf{b} दो शून्येतर परिमेय संख्याएँ हों, \mathbf{m} एक प्राकृत संख्या हों तो $(\mathbf{a} \times \mathbf{b})^{\mathrm{m}}=\mathbf{a}^{\mathrm{m}} \times \mathbf{a}^{\mathrm{n}}$ और $\left(\frac{\mathbf{a}}{\mathbf{b}}\right)^{\mathrm{m}}=\frac{\mathbf{a}^{\mathbf{m}}}{\mathbf{a}^{\mathbf{n}}}$ होगा।

उदाहरण 6 : $\left(\frac{3}{4}\right)^{2} \times\left(\frac{5}{3}\right)^{2}$ को घात संख्या में व्यक्त करो ।
हल : $\left(\frac{3}{4}\right)^{2} \times\left(\frac{5}{3}\right)^{2}=\left(\frac{3}{4} \times \frac{5}{3}\right)^{2}=\left(\frac{5}{4}\right)^{2}$
उदाहरण 7 : $\left(\frac{3}{4}\right)^{2} \times\left(\frac{5}{3}\right)^{2}$ को घात संख्या में व्यक्त करो ।
हल : $\left(\frac{5}{7}\right)^{3} \div\left(\frac{5}{7}\right)^{3}=\left(\frac{5}{7} \div \frac{5}{7}\right)^{3}=(1)^{3}=1$
याद करो : (i) m यदि एक समप्राकृत संख्या हो, तो $(-1)^{\mathrm{m}}=1$ होगा ।
(ii) m एक विषम प्राकृत संख्या हो, तो $(-1)^{\mathrm{m}}=1$ होगा ।

उदाहरण $8: \frac{2^{3} \times 3^{4}}{3 \times 2^{5}}$ को सरल करो ।
हल : $\frac{2^{3} \times 3^{4}}{3 \times 2^{5}}=\left(\frac{2^{3}}{2^{5}}\right) \times\left(\frac{3^{4}}{3}\right)=\frac{1}{2^{5-3}} \times 3^{4-1}=\frac{1}{2^{2}} \times 3^{3}=\frac{27}{4}$
उदाहरण $9: \frac{\left(-\frac{2}{3}\right)^{4} \times \frac{216}{125}}{\left(\frac{6}{5}\right)^{2} \times \frac{4}{9}}$ को सरल करो ।
हल : $\frac{\left(-\frac{2}{3}\right)^{4} \times \frac{216}{125}}{\left(\frac{6}{5}\right)^{2} \times \frac{4}{9}}=\frac{\left(-\frac{2}{3}\right)^{4} \times\left(\frac{6}{5}\right)^{3}}{\left(\frac{6}{5}\right)^{2} \times\left(\frac{2}{3}\right)^{2}}=\left(\frac{-2}{3}\right)^{4-2} \times\left(\frac{6}{5}\right)^{3-2}=\left(\frac{-2}{3}\right)^{2} \times\left(\frac{6}{5}\right)=\frac{4}{9} \times \frac{6}{5}=\frac{8}{15}$
खुद करो : सरल करो :
(i) $\left(\frac{2}{9}\right)^{5} \div\left(\frac{-2}{9}\right)^{4}$
(ii) $\left(\frac{1}{25}\right)^{4} \div 5^{4}$
(iii) $\frac{3^{8} \times a^{5}}{27 \times a^{2}}(a \neq 0)$
(iv) $\left(4^{2} \times 4^{3}\right) \div 4^{5}$
(v) $\left(\frac{-2}{3}\right)^{9} \div\left(\frac{2}{3}\right)^{7}$
(vi) $\left\{\left(\frac{1}{2}\right)^{3}\right\}^{2} \div\left(\frac{1}{4}\right)^{3}$

अभ्यास 5 (b)

1. निम्न संख्याओं को एक आधार वाली घात संख्याओं में व्यक्त करो ।
(i) $3^{6} \times 3^{4}$
(ii) $\left(\frac{1}{2}\right)^{6} \times\left(\frac{1}{2}\right)^{5}$
(iii) $\left(\frac{2}{3}\right)^{7} \times\left(\frac{2}{3}\right)^{3}$
(iv) $(4)^{6} \times(-4)^{3}$
(v) $\left(\frac{3}{2}\right)^{5} \times\left(\frac{2}{3}\right)^{4}$
(vi) $(-4)^{6} \times(4)^{3}$
(vii) $(9)^{3} \times(27)^{4}$
(viii) $(8)^{3} \times(-4)^{4}$
(ix) $(7)^{8} \times(-7)^{5}$
(x) $8^{5} \div(4)^{4}$
(xi) $\left\{(5)^{3}\right\}^{4}$
(xii) $\left\{(-2)^{3}\right\}^{4}$
(xiii) $\frac{7^{4}}{3^{4}}$
(xiv) $3^{9} \div 4^{9}$
(xv) $\left(\frac{a}{b}\right)^{7} \div\left(\frac{b}{a}\right)^{3}$
(xvi) $\left(\frac{a}{b}\right)^{4} \div\left(\frac{-b}{a}\right)^{3}$
2. मान ज्ञात करो :
(i) $3^{4} \times 3^{3} \div 3^{5}$
(ii) $\left(3^{11} \times 4^{5}\right) \div\left(4^{4} \times 3^{6}\right)$
(iii) $\left(4^{3} \times 4^{2} \times 4\right) \div\left(2^{4} \times 2^{3} \times 2^{2}\right)$
(iv) $2^{11} \div 8^{3} \times 4^{2}$
(v) $\left(\frac{3}{2}\right)^{6} \div\left(\frac{2}{3}\right)^{2}$
3. सरल करो :
(i) $\left(2^{2} \times 2\right)^{3}$
(ii) $(\mathrm{ab})^{5} \times \mathrm{a}^{3} \times \mathrm{b}^{2}$
(iii) $\left(\frac{a}{b}\right)^{7} \times a^{6} \times b^{5} \times\left(\frac{b}{a}\right)^{6}$
(iv) $3^{9} \times 3^{5} \div 9^{7}$
(v) $\left(\frac{2}{3}\right)^{5} \div\left(\frac{2}{3}\right)^{8} \times\left(\frac{2}{3}\right)^{3}$
4. अभाज्य आधारवाले घात में व्यक्त करो :
(i) $(64)^{3}$
(ii) $(9)^{7}$
(iii) $(125)^{\mathrm{m}-1}$
(iv) $(-8)^{11}$
5. निम्न उक्तियों मे से सही उक्ति के लिए (T) और गलत उक्ति के लिए (F) लिखो :
(i) $2^{3} \times 3^{5}=6^{8}$
(ii) $3^{5} \times 5^{5}=15^{5}$
(iii) $\left(4^{3}\right)^{4}=(4)^{7}$
(iv) $\left(5^{2}\right)^{4}=5^{6}$
(v) $(3)^{3} \times(3)^{3}=3^{6}$
(vi) $\left(a^{3} b^{5}\right)=(a b)^{15}$
(vii) $\left(2^{3} \times 3^{3}\right)=6^{3}$
(viii) $\left(\frac{3}{4}\right)^{6} \div\left(\frac{4}{3}\right)^{2}=\left(\frac{3}{4}\right)^{4}$
(ix) $(-3)^{4} \times(3)^{5} \times(-3)^{2}=(-3)^{11}$
(x) $-3^{4} \times 3^{3}=-3^{7}$
6. किस क्षेत्र में n एक प्राकृत संख्या होगी :
(i) $2^{\mathrm{n}}=32$
(ii) $5^{n}=100$
(iii) $4^{n}=512$
(iv) $4^{n}=1024$
(v) $3^{n}=729$
(vi) $5^{\mathrm{n}}=1250$
(vii) $7^{n}=343$
(viii) $\left(\frac{1}{2}\right)^{n}=\frac{1}{64}$
(ix) $\left(\frac{2}{3}\right)^{n}=\frac{32}{15}$
(x) $(-2)^{\mathrm{n}}=-512$

5.4 पूर्णांक घातांक वाली संख्या :

हम जानते हैं, $\mathrm{a}^{3}, 3 \mathrm{a}$ का गुणनफल है । उसी प्रकार हम a^{0} और a^{-2} को कैसे समझेंगे ? क्या हम कह सकते हैं कि $\mathrm{a}^{0} ; 0$ संख्यावाले a का गुणनफल है या $\mathrm{a}^{-2} ;-2$ संख्यावाले a का गुणनफल है ? ऊपर की दोनों उक्तियाँ अर्थहीन हैं । अतएव हम a^{0} और a^{-2} जैसे घातांकों की परिभाषा निम्न प्रकार से कह सकते हैं :
परिभाषा : $\mathrm{a}^{0}=1, \mathrm{a} \in \mathrm{Q}, \mathrm{a} \neq 0$ और

$$
\mathrm{a}^{-\mathrm{n}}=\frac{1}{\mathrm{a}^{\mathrm{n}}}, \mathrm{a} \in \mathrm{Q}, \mathrm{a} \neq 0, \mathrm{n} \in \mathrm{~N}
$$

याद रखो : 0^{0} की परभिषा नहीं दी जा सकती ।
निष्कर्ष $1: a^{n} \times a^{-n}=1,(a \neq 0, a \in Q, n \in N)$
निष्कर्ष $2: 1 \div a^{-n}=a^{n},(a \neq 0, a \in Q, n \in N)$

उदाहरण 10 : मान ज्ञात करो : (i) (3) ${ }^{-3}$, (ii) $\left(\frac{3}{4}\right)^{-4}$ को घात संख्या में व्यक्त करो ।
हल :
(i) $(3)^{-3}=\frac{1}{3^{3}}=\frac{1}{27}$
(ii) $\left(\frac{3}{4}\right)^{-4}=\frac{1}{\left(\frac{3}{4}\right)^{4}}=\frac{\frac{1}{81}}{256}=\frac{256}{81}$

उदाहरण 11 : ऋणात्मक घातांकों में व्यक्त करो :
(i) 2^{3},
(ii) 729
(iii) $\left(\frac{3}{2}\right)^{5}$
(iv) $\frac{1}{343}$
(v) $\frac{243}{32}$

हल :
(i) $2^{3}=\frac{1}{2^{-3}}=\left(\frac{1}{2}\right)^{-3}$
(ii) $729=3^{6}=\frac{1}{3^{-6}}=\left(\frac{1}{3}\right)^{-6}$
(iii) $\left(\frac{3}{2}\right)^{5}=\left\{\frac{\frac{1}{3}}{2}\right\}^{-5}=\left(\frac{2}{3}\right)^{-5}$
(iv) $\frac{1}{343}=\frac{1}{7^{3}}=7^{-3}$
(v) $\frac{243}{32}=\frac{\frac{1}{32}}{243}=\left(\frac{32}{243}\right)^{-1}=\left\{\left(\frac{2}{3}\right)^{5}\right\}^{-1}=\left(\frac{2}{3}\right)^{-5}$

याद रखो : a और b शून्येतर परिमेय संख्याएँ हों । m और n एक-एक पूर्णांक हों तो :
(i) $a^{m} \times a^{n}=a^{m+a}$
(ii) $a^{m} \div a^{n}=a^{m-n}(m<n)$
(iii) $\left(a^{m}\right)^{n}=a^{m n}$
(iv) $(\mathrm{ab})^{\mathrm{m}}=\mathrm{a}^{\mathrm{m}} \times \mathrm{b}^{\mathrm{m}}$ और $\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$ हैं ।

कुछ विशेष घात :
याद रखो : (i) $(1)^{-10}=\frac{1}{10^{10}}=\frac{1}{1}=1$
(ii) $(-1)^{-8}=\frac{1}{(-1)^{8}}=\frac{1}{1}=1$ (घातांक सम प्राकृत संख्या है)
(iii) $(-1)^{-11}=\frac{1}{(-1)^{11}}=\frac{1}{-1}=-1 \quad$ (घातांक विषम प्राकृत संख्या है)

ध्यान दो $: \mathrm{a} \neq 0, \mathrm{~b} \neq 0$ और $\mathrm{n} \in \mathrm{N}$ हो तो $:\left(\frac{a}{b}\right)^{-n}=\frac{1}{\left(\frac{a}{b}\right)^{n}}=\frac{\frac{1}{a^{n}}}{b^{n}}=\frac{b^{n}}{a^{n}}=\left(\frac{b}{a}\right)^{n}$
हमें प्राप्त हुआ : $\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n} \quad a, b \in Q, a \neq 0, b \neq 0, n \in N$
उदाहरण 12 : परिमेय संख्या में व्यक्त करो : (i) $(0.1)^{-3}$, (ii) $(0.01)^{-2}$

हल :
(i) $(0.1)^{-3}=\frac{1}{(0.1)^{3}}=\frac{1}{\left(\frac{1}{10}\right)^{3}}=\frac{\frac{1}{1}}{10^{3}}=10^{3}=1000$
(ii) $(0.01)^{-2} \stackrel{1}{=} \frac{1}{(0.01)^{2}}=\frac{1}{\left(\frac{1}{100}\right)^{2}}=\frac{1}{\left(\frac{1}{100}\right)^{2}}=\left(100^{2}\right)=10000$

अभ्यास 5 (c)

1. निम्न संख्याओं को परिमेय संख्या में व्यक्त करो :
(i) 2^{-2}
(ii) 2^{-4}
(iii) 3^{-3}
(iv) 3^{-5}
(v) 10^{-4}
(vi) 5^{-3}
(vii) 20^{-3}
(viii) 50^{-3}
(ix) 100^{-1}
(x) $(0.1)^{5}$
(xi) $(-1)^{-1}$
(xii) $(-1)^{-27}$
2. निम्न घातांकों के मान ज्ञात करो :
(i) $\left(\frac{1}{3}\right)^{-2}$
(ii) $\left(\frac{2}{5}\right)^{-3}$
(iii) $\left(\frac{1}{10}\right)^{-4}$
(iv) $(0.2)^{3}$
(v) $\left(\frac{3}{5}\right)^{-3}$
(vi) $\left(\frac{3}{10}\right)^{-3}$
(vii) $(-1)^{-101}$
$\left(\right.$ viii) $(-1)^{1000}$
3. ऋणात्मक घातांकों में व्यक्त करो :
(i) 3^{6}
(ii) 6^{3}
(iii) -216
(iv) 625
(iv) 643
(v) $\frac{1}{512}$
(vi) $\frac{64}{729}$
5.5. परिमेय घातांक वाली संख्याएँ :
n यदि एक पूर्णांक है, तो a^{n} के संबंध में हमने पिछले अनुछेद में चर्चा की है । अब n यदि एक परिमेय संख्या होगी, तब हम a^{n} की परिभाषा निरूपण करेंगे । (यहाँ मानना होगा कि a एक परिमेय संख्या है) मान लो $\mathrm{a} \in \mathrm{Q}$ और $\mathrm{a}>0$ है, यदि n एक प्राकृत संख्या होगी, तब एक निश्चित परिमेय संख्या ' x ' है, जैसे $x^{n}=a$ ।

यहाँ x को हम $\sqrt[n]{\mathrm{a}}$ या $\mathrm{a}^{\frac{1}{n}}$ के रूप में लिख सकेंगे । इसे हम a का n वाँ मूल कहते हैं ।
$x^{n}=a \Rightarrow x=a^{\frac{1}{n}}$ या $\sqrt[n]{a},(a>0)$ है ।
अब ज्ञात हुआ $a^{\frac{1}{n}}=\sqrt[n]{a}$ ।
लेकिन यहाँ $\sqrt[n]{\mathrm{a}}$ सदैव एक परिमेय संख्या नहीं हो सकती है । यह एक प्राकृत संख्या भी हो सकती है । अगली कक्षा में हम प्राकृत संख्या आधार और परिमेय संख्या घातांक वाले घात संख्याओं की चर्चा करेंगे । हम यह कुछ उदाहरणों पर चर्चा करेंगे, जिनके प्रत्येक क्षेत्र में $\sqrt[n]{a}$ एक परिमेय संख्या होगी ।

उदाहरण के रूप में $\mathrm{a}^{5}=32$ हो तो $\mathrm{a}=\sqrt[5]{32}$ या $32^{\frac{1}{5}}$ अर्थात् 32 का पाँचवाँ मूल $\mathrm{a}=2$ है ।
(यहाँ परिमेय संख्या आधार और पूर्णांक घातांक वाली घात संख्या के लिए जो नियम प्रयुक्त होते हैं परिमेय संख्या आधार और परिमेय संख्या घातांक वाली घात संख्याओं के लिए भी वही नियम प्रयुक्त होंगे ।) (इसका प्रमाण बाद में ज्ञात करोगे ।)

वे हैं :

$\mathrm{a}^{\mathrm{m}} \times \mathrm{a}^{\mathrm{n}}=\mathrm{a}^{\mathrm{m}+\mathrm{n}}$	$\mathrm{a}, \mathrm{b}>0$
$\mathrm{a}^{\mathrm{m}} \div \mathrm{a}^{\mathrm{n}}=\mathrm{a}^{\mathrm{m}-\mathrm{n}}$	$\mathrm{a}, b \in Q$
$(\mathrm{am})^{\mathrm{n}}=\mathrm{a}^{\mathrm{mn}}$	$\mathrm{m}, n \in Q$
$(\mathrm{ab})^{\mathrm{m}}=\mathrm{a}^{\mathrm{m}} \times \mathrm{b}^{\mathrm{m}}$ और $\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$	

उदाहरण 13 : परिमेय संख्याओं में व्यक्त करो ।
(i) $(343)^{\frac{1}{3}}$
(ii) $(1024)^{\frac{1}{5}}$
(iii) $\left(\frac{32}{243}\right)^{\frac{2}{5}}$

हल :
(i) $(343)^{\frac{1}{3}}=(7 \times 7 \times 7)^{\frac{1}{3}}=\left(7^{3}\right)^{\frac{1}{3}}=7^{3 \times \frac{1}{3}}=7$
(ii) $(1024)^{\frac{1}{5}}=(4 \times 4 \times 4 \times 4 \times 4)^{\frac{1}{5}}=\left(4^{5}\right)^{\frac{1}{5}}=4^{5 \times \frac{1}{5}}=4$
(iii) $\left(\frac{32}{243}\right)^{\frac{2}{5}}=\left\{\left(\frac{2}{3}\right)^{5}\right\}^{\frac{2}{5}}=\left(\frac{2}{3}\right)^{5 \times \frac{2}{5}}=\left(\frac{2}{3}\right)^{2}=\frac{4}{9}$

उदाहरण $14:$ सरल करो : $(0.4)^{2} \times(0.125)^{\frac{1}{3}} \div\left(2 \frac{1}{2}\right)^{-3}$
हल : $\quad(0.4)^{2} \times(0.125)^{\frac{1}{3}} \div\left(2 \frac{1}{2}\right)^{-3}=0.16 \times\left\{(0.5)^{3}\right\}^{\frac{1}{3}} \div\left(\frac{5}{2}\right)^{-3}$

$$
=(0.16) \times(0.5)^{3 \times \frac{1}{3}} \div\left(\frac{2}{5}\right)^{3}=\frac{16}{100} \times \frac{5}{10} \div \frac{8}{125}=\frac{2}{25} \times \frac{125}{8}=\frac{5}{4}
$$

अभ्यास 5 (d)

1. निम्न संख्याओं को परिमेय संख्याओं में व्यक्त करो :
(i) $64^{\frac{2}{3}}$
(ii) $16^{1 \frac{1}{4}}$
(iii) $125^{1 \frac{2}{3}}$
(iv) $\left(\frac{81}{625}\right)^{\frac{1}{4}}$
(v) $\left(\frac{1}{216}\right)^{\frac{-2}{3}}$
(vi) $\left(\frac{1}{27}\right)^{-1 \frac{1}{3}}$
2. सरल करो :
(i) $\sqrt{2} \times \sqrt[3]{2} \times \sqrt[6]{2}$
(ii) $8^{3} \times 4^{\frac{1}{2}} \div 16^{2}$
(iii) $27^{\frac{1}{3}} \times \sqrt{\frac{1}{9}} \div 81^{\frac{-1}{4}}$
(iv) $\left(\frac{4}{9}\right)^{\frac{1}{2}} \times 4^{0} \times\left(1 \frac{1}{3}\right)^{-1}$
(v) $(\sqrt[2]{25})^{2} \times(125)^{\frac{1}{3}} \times(625)^{\frac{1}{4}}$
(vi) $(343)^{\frac{1}{3}} \times(49)^{\frac{1}{2}} \div 14$
3. सरल करो :
(i) $\left(a^{l}\right)^{m-n} \times\left(a^{m}\right)^{n-1} \times\left(a^{n}\right)^{l-m} \quad(a \neq 0)(l, m, n \in Q)$
(ii) $\left(\frac{a^{p}}{a^{q}}\right)^{p+Q} \times\left(\frac{a^{q}}{a^{r}}\right)^{q+r} \times\left(\frac{a^{r}}{a^{p}}\right)^{r+p} \quad(a \neq 0),(p, q, r \in Q)$
4. गुणनफल ज्ञात करो ।
(i) $\left(a^{\frac{1}{2}}+b^{\frac{1}{2}}\right)\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right) \quad(a>0, b>0)$
(ii) $(\sqrt{x}+\sqrt{y})(\sqrt{x}-\sqrt{y}) \quad(x>0, y>0)$

वर्ग-वर्गमूल तथा घन - घनमूल (SQUARE-SQUARE ROOTS \& CUBE-CUBE ROOTS)

अध्याय

3.1. भूमिका (Introductin) :

पहले के अध्याय में परिमेय आधार और पूर्णांक घातांक वाले घात-संख्या के संबंध में चर्चा की गई है । यदि आधार a और घात 2 हो तो संख्या a^{2} होगी। दो ' a ' के गुणनफल को a^{2} के रूप में व्यक्त किया जाता है । a^{2} को a का वर्ग (square) या द्वितीय घात कहते हैं । अर्थात् $a \times a=a^{2}$ है ।

उसी प्रकार $a \times a \times a=a^{3}$, अर्थात् तीन ' a ' का गुणनफल है । यह ' a ' का घन या ' a ' का तृतीय घात कहलाता है ।

अतएव किसी संख्या को उसी संख्या से गुणा करने पर उस गुणनफल को उस संख्या का वर्ग कहते हैं । उस संख्या को वर्ग संख्या का वर्गमूल (Square root) कहते हैं । इन अध्याय का उद्देश्य है वर्ग और वर्गमूल के संबंध में चर्चा करना । इसके अलावा घनमूल (Cube root) ज्ञात करने की विधि पर भी इस अध्याय में चर्चा होगी । इस अध्याय में वर्ग ज्ञात करने और घन ज्ञात करने की कुछ संक्षिप्त विधियों पर चर्चा करने के साथ-साथ गाणितीय संरचना (Mathematical pattern) के माध्यम से इन्हें कैके प्रस्तुत किया जा सकेगा, उस पर इस अध्याय में प्रकाश डाला गया है ।

6.2 संख्या का वर्ग और पूर्णवर्ग संख्या (Square of a number and perfect square) :

यदि m एक पूर्णांक हो और n एक प्राकृत संख्या हो और $n=m^{2}$ हो, तब ' n ' एक पूर्णवर्ग संख्या (Perfect Square number) होगी ।

उदाहरण के रूप में $2 \times 2=2^{2}, 2^{2}=4$ है । अतएव 2 का वर्ग 4 है । उसी प्रकार (-2) का वर्ग भी 4 है ।
अतएव 4 का वर्गमूल ± 2 है । 0 और ± 1 से ± 10 तक पूर्णवर्गों को यहाँ सारणी में दर्शाया गया है ।
सारणी 6.1

संख्या	0	± 1	± 2	± 3	± 4	± 5	± 6	± 7	± 8	± 9	± 10
वर्ग	0	1	4	9	16	25	36	49	64	81	100

प्राकृत संख्याओं में से $1,4,9,16,25$, \qquad आदि प्राकृत संख्याओं को पूर्णवर्ग संख्या (Perfect Square number) कहते हैं । प्रत्येक प्राकृत संख्या वर्ग संख्या नहीं हो सकती । वर्ग संख्या के प्रत्येक अभाज्य गुणनखंड को युग्म के रूप में व्यवस्थित करके लिखा जाता है । जैसे : $576=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3$ ।

परवर्ती अनुच्छेद में इस पर विस्तार से चर्चा की जाएगी ।
6.3 पूर्णवर्ग संबंधी कुछ गुण-धर्म (Some Properties of Perfect Square Numbers) :
(a) प्रत्येक पूर्णवर्ग संख्या के इकाई के स्थान पर $0,1,4,5,6$ या 9 संख्या होगी । लेकिन $2,3,7$ या 8 नहीं हो सकेगी । (सारणी 6.1 देखो)

किसी संख्या के अंत में विषम संख्या के सून्य हो, तो वह संख्या पूर्ण वर्ग नहीं हो सकेगी ।
(b) विषम संख्या एवं सम संख्या का वर्ग क्रमश : विषम और सम संख्या होती है ।
(c) निम्न संरचना पर ध्यान दो :

$$
\begin{array}{ll}
2^{2}=4=3 \times 1+1 & 2^{2}=4=4 \times 1 \\
3^{2}=9=3 \times 3 & 3^{2}=9=4 \times 2+1 \\
4^{2}=16=3 \times 5+1 & 4^{2}=16=4 \times 4 \text { आदि । }
\end{array}
$$

इस संरचना से हमें ज्ञात हुआ :
1 से बड़ी किसी भी पूर्ण वर्ग संख्या को 3 से भाग देने पर शेषफल 0 या 1 होगा ।
उसी प्रकार 1 से बड़ी किसी भी पूर्ण वर्ग संख्या को 4 से भाग देने पर शेषफल 0 या 1 होगा ।
(d) किसी पूर्ण वर्ग संख्या ' n ' को किसी अभाज्य संख्या ' \mathbf{p} ' से गुणा करने से गुणनफल 'pn' एक पूर्णवर्ग संख्या नहीं हो सकता । अर्थात् 64 एक पूर्णवर्ग है, पर उसे 2 या 3 से गुणा (किसी भी अभाज्य संख्या से) करने पर वह पूर्ण वर्ग संख्या नहीं हो जाती ।
(e) पाइथागोरीय त्रिक (Pythogorean triplet) :

एक संख्या त्र्यी (Triplet) $\mathrm{m}, \mathrm{n}, \mathrm{p}$ प्राकृत संख्याएँ हैं । उनमें यदि p वृहत्तम हो और $\mathrm{m}^{2}+\mathrm{n}^{2}=\mathrm{p}^{2}$ हो, तब $(\mathrm{m}, \mathrm{n}, \mathrm{p})$ को पाइथागोरीय-त्रिक कहते हैं ।

उदाहरण स्वरूप $(3,4,5)$ और $(5,12,13)$ एक एक पाइथागोरय त्रिक हैं । किसी भी संख्या $m(m>1)$ के लिए $\left(2 \mathrm{~m}, \mathrm{~m}^{2}-1, \mathrm{~m}^{2}+1\right)$ भी पाइथागोरस त्रिक होंगी ।

उदाहरण : $\mathrm{m}=5,2 \mathrm{~m}=10, \mathrm{~m}^{2}-1=5^{2}-1=24$

$$
\mathrm{m}^{2}+1=5^{2}+1=26 \text { है । यहाँ } 10^{2}+24^{2}=26^{2} \text { होगा । }
$$

अर्थात् $(10,24,26)$ संख्या-त्र्यी को पाइथागोरस त्र्यी कहते हैं ।

याद रखो:

(i) जब $\mathrm{m}(\mathrm{m}>1)$ एक विषम संख्या हो, तब $\left(\mathrm{m}, \frac{\mathrm{m}^{2}-1}{2}, \frac{\mathrm{~m}^{2}+1}{2}\right)$ एक पाइथागोरस-त्रिक होगी ।
(ii) जब $\mathrm{m}(\mathrm{m}>2)$ एक सम संख्या हो, तब $\mathrm{m},\left(\frac{\mathrm{m}}{2}\right)^{2}-1$ और $\left(\frac{\mathrm{m}}{2}\right)^{2}+1$ भी एक पाइथागोरस-त्रिक होगी ।

खुद परीक्षण करके देखो :

(f) निम्न संरचनाओं पर ध्यान दो :

$$
2^{2}-1^{2}=3=2+1
$$

$3^{2}-2^{2}=5=3+2$
$4^{2}-3^{2}=7=4+3$ आदि ।
इससे स्पष्ट हुआ कि दो क्रमागत पूर्ण वर्ग संख्याओं का अंतर संख्या-द्वय के जोड़ के बराबर है । कोई भी विषम संख्या दो क्रमागत संख्याओं के वर्ग का अंतर होगी ।

निम्न संरचना पर ध्यान दो :
$3=3.1=\left(\frac{3+1}{2}\right)^{2}+\left(\frac{3-1}{2}\right)^{2}=2^{2}-1^{2}$
$5=5.1=\left(\frac{5+1}{2}\right)^{2}-\left(\frac{5-1}{2}\right)^{2}=3^{2}-2^{2}$
$7=7.1=\left(\frac{7+1}{2}\right)^{2}-\left(\frac{7-1}{2}\right)^{2}=4^{2}-3^{2}$ आदि
(g) निम्न संरचना पर ध्यान दो :

$$
\begin{array}{ll}
1^{2}=1 & \text { (प्रथम विषम प्राकृत संख्या) } \\
2^{2}=1+3 & \text { (पथम दो विषम प्राकृत संख्याओं का जोड़) } \\
3^{2}=1+3+5 & \text { (प्रथम तीन विषम प्राकृत संख्याओं का जोड़) } \\
4^{2}=1+3+5+7 & \text { (प्रथम चार विषम प्रृृत संख्याओं का जोड़) }
\end{array}
$$

इस संरचना से स्पष्ट हाता है कि किसी भी संख्या का वर्ग (समान संख्या की) प्रथम विषम प्राकृत संख्याओं के जोड़ के बराबर है । अर्थात् प्रथम 8 विषम प्राकृत संख्याओं का जोड़ 8^{2} के बराबर है ।

$$
1+3+5+7+9+11+13+15=8^{2}=64 \text { है । }
$$

अभ्यास 6 (a)

1. निम्न प्राकृत संख्याओं का वर्ग ज्ञात करो :

27, 34, 46, 118, 225
2. निम्न संख्याओं में से कोई भी पूर्णवर्ग संख्या नहीं है, कारण दर्शाओ :

64000, 89722, 2220, 505050, 1057, 23453, 222222
3. निम्नलिखित संख्याओं में से कौन-कौन से वर्ग विषम संख्या और कौन-कौन से वर्ग सम संख्या है, कारण दर्शाअ ।
28, 113, 278, 314, 4315, 23872
4. 100 के बीच आनेवाली अभाज्य पिथागोरीय-त्रयी ज्ञात करो ।
(पिथागोरीय त्रयी में यदि संख्याओं वे बीच कोई अभयनिष्ठ गुणनखंड नहीं होगा, तो वे अभाज्य संख्या-त्र्यी होंगी ।)
5. निम्नलिखित संख्याओं को दो वर्गों के अंतर के रूप में व्यक्त करो ।

$$
19,27,31,41,53
$$

6. कुछ पाइथागोरीय त्रयी की एक-एक संख्या नीचे दी गई है । सूत्र का प्रयोग करके पिथागोरीय-त्र्यी लिखिए।

$$
7,11,15,12,16
$$

7. विभिन्न संरचनाओं को देखकर नीचे दिए गए संबंधों के शून्यस्थान भरो :
(a) $1^{2}=1$

$$
11^{2}=121
$$

$111^{2}=12321$
$1111^{2}=1234321$
$11111^{2}=$
$111111^{2}=$
(c) $11^{2}=121$
$101^{2}=10201$
$10101^{2}=102030201$
$1010101^{2}=$
$101010101^{2}=$
(b) $11^{2}=121$
$101^{2}=10201$
$1001^{2}=1002001$
$100001^{2}=$
$10000001^{2}=$
(d) $1^{2}+2^{2}+2^{2}=3^{2}$
$2^{2}+3^{2}+6^{2}=7^{2}$
$3^{2}+4^{2}+12^{2}=13^{2}$
$4^{2}+5^{2}+\ldots=21^{2}$
$5^{2}+\ldots \ldots . . .+30^{2}=$ \qquad .${ }^{2}$
(e) $11^{2} \times 11^{2}$ में (अंकों का जोड़) $=22^{2}$

अर्थात् $(11)^{2}=(1+2+1)=484=22^{2}$
$111^{2} \times 111^{2}$ में (अंकों का जोड़) $=333^{2}$
$1111^{2} \times 1111^{2}$ में (अंकों का जोड़) $=$
$11111^{2} \times 11111^{2}$ में (अंकों का जोड़) $=$
(f) $7^{2}=49$
$67^{2}=4489$
$667^{2}=444889$
$6667^{2}=44448889$
$66667^{2}=$ \qquad
$666667^{2}=$
8. शून्यस्थान भरो :

$$
\begin{array}{ll}
18^{2}-17^{2}=\ldots \ldots \ldots \ldots . & 25^{2}-24^{2}=\ldots \\
112^{2}-111^{2}=\ldots \ldots \ldots . . & 171^{2}-170^{2}=
\end{array}
$$

\qquad
9. निम्न उक्तियों में से सही उक्ति के पास (\checkmark) निशान और गलत उक्ति के लिए (x) निशान लगाओ ।
\qquad
(a) एक पूर्ण वर्ग संख्या में आनेवाली अंकों की संख्या सम है ।
(b) एक अभाज्य संख्या का वर्ग एक अभाज्य संख्या होगी ।
(c) किसी सम संख्या का वर्ग ऋणात्मक नहीं होता ।
(d) दो वर्ग संख्याओं का योगफल एक वर्गसंख्या होती है ।
(e) एक विषम संख्या का वर्ग विषम संख्या होती है ।
(f) एक ऋणात्मक पूर्णांक का वर्ग एक ऋणात्मक संख्या होती है ।
(g) एक संख्या के वर्ग के इकाई का अंक 1 है तो उस संख्या के इकाई के स्थान का अंक 9 या 1 होगा ।

6.4 संक्षिप्त वर्ग निरूपण विधि (Short-cut method to find square numbers) :

(a) इकाई के स्थान पर 5 आनेवाली संख्या का वर्ग निरूपण :

ध्यान दो : $15^{2}=225,25^{2}=625,35^{2}=1225,45^{2}=2025,55^{2}=3025$ आदि ।
यहाँ संख्या की इकाई के स्थान पर 5 आने से वर्ग संख्या की इकाई और इकाई के स्थानों के अंक क्रमश: 5 और 2 होते हैं । सैकड़े के स्थान पर संख्या की दहाई के स्थान के अंक और इसकी परवर्ती संख्या का गुणनफल रहता है ।
ध्यान दो : $15^{2}=(1 \times 2) 100+25$

$$
\begin{aligned}
& 25^{2}=(2 \times 3) 100+25 \text { और } \\
& 35^{2}=(3 \times 4) 100+25 \ldots \ldots . . \\
& 125^{2}=(12 \times 13) 100+25=15625 \text { आदि । }
\end{aligned}
$$

इसमें प्रयुक्त कौशल पर ध्यान दें ।
प्रत्येक संख्या का रूप है : $(10 n+5), n \in N$.

$$
\begin{aligned}
\therefore(10 \mathrm{n}+5)^{2} & =(10 \mathrm{n})^{2}+2 \cdot 10 \cdot \mathrm{n} .5+(5)^{2} \\
& =100 \mathrm{n}^{2}+100 \mathrm{n}+25 \\
& =\{\mathrm{n} \times(\mathrm{n}+1)\} 100+25
\end{aligned}
$$

(b) $\mathrm{a}^{2}-\mathrm{b}^{2}=(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})$ (सर्वसमिका के प्रयोग से संख्या के वर्ग का निरूपण)

$$
\begin{equation*}
a^{2}-b^{2}=(a+b)(a-b)=a^{2}+(a+b)(a-b)+b^{2} . \tag{i}
\end{equation*}
$$

इस सूत्र की सहायता से हम कुछ संख्याओं के वर्ग निरूपण करेंगे । उदाहरण स्वरूप : $a=17$ यहाँ देखेंगे कि 17 का निकटतम कौन-सी संख्या 10 का समापवर्त्य है। 17 को निकटतम (10 का समापवर्त्य) संख्या $=20$ ।

$$
\begin{aligned}
& \mathrm{a}=17 \mathrm{r} \text { है } \mathrm{b}=20-17=3 \text { है । } \\
& \begin{aligned}
17^{2}=(17+3) & (17-3)+3^{2} \quad\left(\text { सूत्र : } \mathrm{a}^{2}=(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})+\mathrm{b}^{2}\right. \\
& =20 \times 19+9=289
\end{aligned}
\end{aligned}
$$

उसी प्रकार हम 36 का वर्ग निरूपण करेंगे ।
$\mathrm{a}^{2}=(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})+\mathrm{b}^{2}$
$a=36$ हो, तो $b=4$ होगी (36 के निकटतम 10 का समापर्त्य 40 है ।)
$36^{2}=(36+4)(36-4)+4^{2}=40 \times 32+16=1296$
(c) $(x+a)(x+b)=x^{2}(a+b) x+a b$ इस सर्वसमिका का प्रयोग करके संख्या का वर्ग निरूपण :

हम जानते हैं $(x+a)(x+b)=x^{2}(a+b) x+a b$

$$
\begin{equation*}
=(x+a)(x+b)=x(x+a+b)+a b . \tag{ii}
\end{equation*}
$$

सूत्र (ii) का प्रयोग करके एक संख्या का वर्ग निरूपण करेंगे ।

$$
\begin{aligned}
17^{2} & =(17 \times 17) \\
& =(10+7)(10+7)=10(10+7+7)+7 \times 7 \\
& =10 \times 24+49=289
\end{aligned}
$$

यहाँ ध्यान दो : $\mathrm{a}=\mathrm{b}=7$, आधार $=10$ है ।
उसी प्रकार $36^{2}=36 \times 36$

$$
\begin{aligned}
& =(40-4) \times(40-4) \\
& =40\{40+(-4)+(-4)\}+(-4) \times(-4)
\end{aligned}
$$

यहाँ $\mathrm{a}=\mathrm{b}=-4$, आधार $=40$ है ।

$$
=40 \times 32+16=1280+16=1296
$$

(d) $(\mathrm{a} \pm \mathrm{b})^{2}=\mathrm{a}^{2} \pm 2 \mathrm{ab}+\mathrm{b}^{2}$ सूत्र के प्रयोग से संख्या का वर्ग निरूपण :

दी गई सर्वसमिका के प्रयोग से हम एक संख्या का वर्ग निरूपण करेंगे ।
$13^{2}=(10+3)^{2}=100+60+3^{2}=16$ दहाई +9 इकाई $=(13+3) 10+3^{2}=169$
उसी प्रकार $14^{2}=(14+4) 10+4^{2}=196,17^{2}=(17+7) 10+7^{2}=289$
और $18^{2}=(18+8) 10+8^{2}=324$ आदि ।
उसी प्रकार $108^{2}=108^{2}=(100+8)^{2}=10000+1600+64$

$$
\begin{aligned}
& =(100+16) \text { सैकड़ा }+64 \text { इकाई } \\
& =(100+2 \times 8) 100+8^{2}=11664
\end{aligned}
$$

अब हम 92 का वर्ग निरूपण करेंगे, जिसमें $(a-b)^{2}=a^{2}-2 a b+b^{2}$ को सूत्र का प्रयोग करेंगे ।

$$
\begin{aligned}
92^{2} & =(100-8)^{2}=10000-1600+64=(100-16) 100+64 \\
& =(100-2 \times 8) 100+8^{2}=8464 \\
97^{2} & =(100-3)^{2}=10000-1600+9=(100-6) 100+9 \\
& =(100-2 \times 3) 100+3^{2}=9409
\end{aligned}
$$

उसी प्रकार $95^{2}=(100-5)^{2}=(100-2 \times 5) 100+5^{2}=9025$
और भी वर्ग निरूपण करने के कुछ संक्षिप्त सूत्र है । उन्हें तुम परवर्ते कक्षा में सीखोगे ।

6.5 परिमेय संख्या का वर्ग (Squared of rational numbers) :

हम जानते हैं : $\mathrm{m}, \mathrm{n} \in \mathrm{Z}$ और $\mathrm{n} \neq 0$ हो तो $\frac{\mathrm{m}}{\mathrm{n}} \in \mathrm{Q}$ अर्थात् $\frac{\mathrm{m}}{\mathrm{n}}$ एक परिमेय संख्या है । परिमेय संख्या का वर्ग निरूपण करने के लिए निम्न नियम पर ध्यान दो ।

$$
\left(\frac{\mathrm{m}}{\mathrm{n}}\right)^{2}=\frac{\mathrm{m}}{\mathrm{n}} \times \frac{\mathrm{m}}{\mathrm{n}}=\frac{\mathrm{m} \times \mathrm{m}}{\mathrm{n} \times \mathrm{n}}=\frac{\mathrm{m}^{2}}{\mathrm{n}^{2}} \quad \text { अर्थात् }\left(\frac{\mathrm{m}}{\mathrm{n}}\right)^{2}=\frac{\mathrm{m}^{2}}{\mathrm{n}^{2}}
$$

उदाहरण 1 : परिमेय संख्याओं का वर्ग ज्ञात करो : (i) $\frac{3}{5}$ (ii) 0.021 (iii) 0.02 (iv) 3.55

हल :
(i) $\left(\frac{3}{5}\right)^{2}=\frac{3^{2}}{5^{2}}=\frac{9}{25}$
(ii) $(0.021)^{2}=\left(\frac{21}{1000}\right)^{2}=\frac{(21)^{2}}{(1000)^{2}}=\frac{441}{1000000}=0.000441$
(iii) $(0.02)^{2}=\left(\frac{2}{100}\right)^{2}=\frac{4}{10000}=0.0004$
(iv) $(3.55)^{2}=\left(\frac{355}{100}\right)^{2}=\left(\frac{126025}{10000}\right)=12.6025$
$\left[355^{2}=(35 \times 36) 100+25=126000+25=126025\right]$
इन उदाहरणों से तुम्हें ज्ञात हुआ कि मूल संख्या में दशमलव के बाद एक अंक होता है तो वर्ग संख्या में दशमलव के बाद दो अंक रहेंगे 13.55 में दशमलव के बाद 2 अंक है । इसलिए इसके वर्ग संख्या में दशमलव के बाद 4 अंक रहेंगे । जैसे : $(3.55)^{2} 12.6025$ है ।
उदाहरण 2 : निम्न परिमेय संख्याओं में से कौन-कौन सी वर्गसंख्याएँ है ?
(i) $\frac{125}{625}$
(ii) 0.004
(iii) 2.56

हल : (i) $\frac{121}{625}=\frac{11 \times 11}{25 \times 25}=\frac{(11)^{2}}{(25)^{2}}=\left(\frac{11}{25}\right)^{2}$ यह एक पूर्ण वर्ग संख्या है ।
(ii) $0.004=\frac{4}{1000}=\frac{(2)^{2}}{(10)^{2}}$
(यहाँ 1000 कोई पूर्ण वर्ग संख्या नहीं है । अतएव 0.004 किसी संख्या का वर्ग नहीं है ।)
(iii) $2.56=\frac{256}{100}=\frac{(16)^{2}}{(10)^{2}}=\left(\frac{16}{10}\right)^{2}$ (अतएव 2.56 एक पूर्णवर्ग संख्या है ।

अभ्यास 6 (b)

1. संक्षिप्त वर्ग निरूपण विधि का प्रयोग करके निम्न संख्याओं का वर्ग ज्ञात करो :
$45,55,85,105,255$
2. संक्षिप्त विधि से निम्न संख्याओं का वर्ग ज्ञात करो :

27, 37, 46, 78, 98
3. $(a+b)^{2}=a^{2}+2 a b+b^{2}$ सर्वसमिका का प्रयोग करके $19,102,107$ का वर्ग ज्ञात करो ।
4. $(a-b)^{2}=a^{2}-2 a b+b^{2}$ सर्वसमिका का प्रयोग करके $93,95,98$ का वर्ग ज्ञात करो ।
5. $52^{2}=\left(5^{2}+2\right) 100+2^{2}=2704,57^{2}=\left(5^{2}+7\right) 100+7^{2}=3249$

इस वर्ग निरूपण विधि का प्रयोग करके $51,54,56,58,59$ का वर्ग ज्ञात करो ।
6. $45^{2}=4 \times(4+1) 100+5^{2}$

$$
55^{2}=5 \times(5+1) 100+5^{2} \text { और } 65^{2}=6 \times(6+1) 100+5^{2}
$$

इस वर्ग निरूपण विधि का प्रयोग करके $35,75,115,205$ का वर्ग ज्ञात करो ।
7. $0.12,1.11,00003$ परिमेय संख्याओं का वर्ग ज्ञात करो ।
8. निम्न परिमेय संख्याओं में से कौन-कौन-सी पूर्ण वर्ग संख्याएँ है, ज्ञात करो ।
$121,1009,65.61,0.00256,0.36,12.321$

6.6 पूर्ण वर्ग संख्या का वर्गमूल :

परिभाषा : m एक परिमेय संख्या और $\mathrm{m}^{2}=\mathrm{n}$ हो, n का वर्गमूल m होगा ।
तुम जानते हो $5^{2}=25$, और $(-5)^{2}=25$ है, परिभाषा के अनुसार कहा जा सकता है कि 25 का वर्गमूल +5 और -5 होगा। (इसे ± 5 के रूप में लिखते हैं ।)

हमने देखा कि 25 का वर्गमूल धनात्मक या ऋणात्मक होगा । वर्गमूल सूचक चिन्ह है $: \sqrt{ }$ ।
$\therefore \sqrt{25}, 25$ का वर्गमूल $=5,-\sqrt{25}, 25$ का ऋणात्मक वर्गमूल $=-5$
$\therefore 25$ का वर्गमूल $= \pm 5$ होगा ।
प्रथम दश पूर्ण वर्ग संख्याओं का वर्गमूल सारणी में दिया गया है ।

सारणी 6.2

दी गई संख्या का वर्गमूल	0	1	4	9	16	25	36	49	64	81	100
पूर्ण वर्ग संख्या	0	± 1	± 2	± 3	± 4	± 5	± 6	± 7	± 8	± 9	± 10

6.7 पूर्ण वर्ग संख्या का वर्गमूल निरूपण करने की विधि :

पहली विधि : अभाज्य गुणनखंडो के द्वारा वर्गमूल निरूपण :
उदाहरण $3: 36$ का वर्गमूल ज्ञात करो ।
हल : $36=2 \times 2 \times 3 \times 3, \sqrt{36}=\sqrt{2 \times 2 \times 3 \times 3}=\sqrt{2^{2} \times 3^{2}}=2 \times 3=6$
$(-6)^{2}=36$ है, तब 36 का ऋणात्मक वर्गमूल $=-\sqrt{36}=-6$ है ।
उदाहरण $4: \pm \sqrt{144}$ का मान ज्ञात करो ।
हल : $144=2 \times 2 \times 2 \times 2 \times 3 \times 3, \sqrt{144}=\sqrt{2^{2} \times 2^{2} \times 3^{2}}=2 \times 2 \times 3=12$

$$
\therefore \pm \sqrt{144}= \pm 12 \text { है । }
$$

दूसरी विधि : भागफल विधि से वर्गमूल निरूपण :
उदाहरण $5: 126025$ का वर्गमूल ज्ञात करो ।

| $\frac{355}{3)} \overline{12} \overline{60} \overline{25}$ |
| :--- |$\left(3^{2}=9\right.$

$+3(-9)$
65$) \quad 360$
$+5(-3) .25$
$705)-3525$

$$
\frac{(-) 3525}{0} 705 \times 5=3525
$$

(i) वर्गसंख्या 6 अंकों की है। तुम दाई ओर से शुरू करके प्रत्येक अंक-युम्म पर बार (—) लगाओ। ये तीन जोड़े होंगे।
(ii) बाईं ओर का प्रथम अंक युम्म 12 है। 12 से क्षुप्रत्तर वृहतर पूर्ण वर्ग संख्या 9 है।
\therefore वर्गमूल के लिए भागफल में 3 लिखो।
(iii) भागशेष 3 लिखो । दाईं ओर का अंक युग्म 60 शेष में लिखो । अब भाज्य हुआ 360 ।
(iv) पहले भाजक के 3 के साथ और 3 जोड़कर दूसरे भाजक का पहला अंक 6 लिखो ।
(v) इकाई के स्थान पर 5 और वर्गमूल / भागफल के स्थान पर 5 लिखो । $65 \times 5=365,360$ भाज्य के नीचे लिखो । ($\because 66 \times 6=396$, इसलिए वर्गमूल (भागफल) के स्थान पर +6 लेने से यहा 360 से अधिक हो जाएगा ।
(vi) अब शेषफल 35 के दाईं ओर अंतिम अंग-युग्म 25 लिखो । भाजक 65 के साथ 5 जोड़कर नए भाजक के दो अंक 70 लिखो ।
(vii) अब वर्गमूल / भागफल के स्थानपर 5 और भाजक की इकाई के स्थान पर 5 लिखकर $705 \times 5=3525$ भाज्य के नीचे लिखो । भाज्य 3525 है । अब दोनों का अंतर 0 है । यह शेषफल है । 1026025 का वर्गमूल ± 355 है । विभाजन द्वारा वर्गमूल निरूपण करने के संबंध में कुछ जानने की बातें :
(a) दो नई संख्या (जिसका वर्गमूल ज्ञात करना है ।) के अंकों को युग्म बनाने के बाद यदि कोई अंक बचता है, तब उसके बाई तरफ ' 0 ' जोड़कर उसे अंक-युग्म बनाया जाएगा ।
(i) दी गई संख्या में जितने अंक युग्म होंगे विभाजन की संक्रिया उतने चरणों से संपन्न होगा ।
(ii) दी गई संख्या के प्रत्येक अंक-युग्म के लिए वर्गमूल में एक अंक मिलेगा ।
(b) इस चर्चा से स्पष्ट तुआ कि संख्या को देखकर इसके वर्गमूल में कितने अंक होंगे, इसे पहले से ही जाना जा सकता है । उदाहरण 6:2566404 का वर्गमूल ज्ञात करो ।

हल :

:	1602
1	$\begin{array}{rlll} \begin{array}{rlll} \overline{02} & \overline{56} & \overline{64} & \overline{04} \\ (-) 1 & & & \\ \hline \end{array} \end{array}$
$\begin{aligned} & +1 \\ & 26 \\ & +6 \end{aligned}$	$\begin{array}{cc} 1 & 56 \\ (-) 1 & 56 \end{array}$
$\begin{aligned} & 320 \\ & +0 \end{aligned}$	$\begin{array}{cc} 0 & 64 \\ (-) & 00 \end{array}$
3202	64 $(-)$ 64 04

(i) यह संख्या 7 अंकों की है। बाईं ओर एक शून्य जोड़कर उसे चार अंक-युग्म बनाया गया ।
(ii) प्रत्येक अंक युग्म के दाईं ओर में बार लगाया गया ।
(iii) 2 से छोटी पूर्णवर्ग संख्या 1 है । $2-1=1$, वर्गमूल के स्थान पर 1 लिखा गया ।
(iv) दूसरा भाज्य हुआ 156 । 1 के साथ 1 जोड़कर दूसरे भाजक का प्रथम अंक 2 लिखो ।
(v) दूसरे चरण में $26 \times 6=156$ भाज्य नीचे लिखो ।
(vi) वर्गमूल / भागफल के स्थान पर 6 लिखो ।
(vii) $156-156=0$, शेषफल 0 है । उसके बाद 64 लिखो । $26+6=32$ तीसरे भाजक के स्थान पर लिखो । और एक अंक इकाई के स्थान पर लिखने से वह तीन अंको की संख्या होगी । लेकिन भाज्य 2 अंकों वाला है । इसलिए वर्गमूल के स्थान पर शून्य (0) लिखा गया ।
(viii) 64 के नीचे $320 \times 0=0$ लिखकर घटाने से 64 शेषफल होगा । 64 के दाईं ओर अंतिम अंक-युग्म 04 लिखो ।
(ix) चौथा भाज्य 6404 है । भाजक $320+0=320$ है । अब 320 के दाई ओर 2 लिखकर चौथे भाजक को 3202 बनाना होगा । वर्गमूल / भागफल के स्थान पर 2 लिखो ।
(x) $3202 \times 2=6404$, भाज्य $6404-6404=0$ अब शेषफल ' 0 ' है । वर्गमूल 1602 है ।
$\therefore 2566404$ का वर्गमूल $= \pm \sqrt{2566404}= \pm 1602$ है ।
उदाहरण $7: 4774225$ का वर्गमूल ज्ञात करो ।

	2185
2	$\begin{array}{llll} & \overline{04} & \overline{77} & \overline{42}\end{array} \overline{25}$
+2	-(04)
41	$\overline{77}$
+1	-41
428	3642
+8	(-)3424
4365	21825
	(-) 21825
	0

$\therefore 4774225$ का वर्गमूल
$= \pm \sqrt{4774225}= \pm 2185$
$\therefore 4774225$ का वर्गमूल $= \pm \sqrt{4774225}= \pm 2185$ है ।
उदाहरण 8: 4774225 का वर्गमूल ज्ञात करो ।

		8027
पहला भाजक	8	$\overline{64} \overline{43} \overline{27} \overline{29}$
	+8	$(-) 64$
दूसरा भाजक	160	043
	+0	00
तीसरे भाजक	1602	4327
	+2	3204
चौथा भाजक	16047	112329
		112329

$\therefore 4774225$ का वर्गमूल $= \pm \sqrt{4774225}= \pm 2185$ है ।

6.8 दशमलव वर्गसंख्या का वर्गमूल ज्ञात करना :

जो जो दशमलव संख्या वर्गसंख्या हैं, उनका वर्गमूल ज्ञात करने की विधि नीचे दी गई है । इसविधि में निम्न सूत्र की सहायता ली जाती है ।

$$
\mathrm{a}, \mathrm{~b} \in \mathrm{~N} \text { हो, तो } \sqrt{\frac{\mathrm{a}}{\mathrm{~b}}}=\frac{\sqrt{\mathrm{a}}}{\sqrt{\mathrm{~b}}}
$$

A. भिन्न (अंश और हर दोनों पूर्ण वर्ग संख्याएँ हों, तो वर्गमूल ज्ञात करना ।

उदाहरण 9: $7 \frac{9}{16}$ का वर्गमूल ज्ञात करो ।
हल $: 7 \frac{9}{16}$ का वर्गमूल $=\frac{121}{16}$ का वर्गमूल $=\sqrt{\frac{121}{16}}=\frac{\sqrt{121}}{\sqrt{16}} \quad\left[\therefore \sqrt{\frac{\mathrm{a}}{\mathrm{b}}}=\frac{\sqrt{\mathrm{a}}}{\sqrt{\mathrm{b}}}\right]$

$$
= \pm \frac{11}{4}= \pm 2 \frac{3}{4} \quad \therefore 7 \frac{9}{16} \text { का वर्गमूल } \pm 2 \frac{3}{4} \text { होगा । }
$$

उदाहरण 10: $10 \frac{6}{25}$ का वर्गमूल ज्ञात करो ।
हल $: 10 \frac{6}{25}$ का वर्गमूल $=\frac{256}{25}$ का वर्गमूल $= \pm \sqrt{\frac{256}{25}}= \pm \frac{\sqrt{256}}{\sqrt{25}}= \pm \frac{16}{5}= \pm 3 \frac{1}{5}$
$\therefore 10 \frac{6}{25}$ का वर्गमूल $\pm 3 \frac{1}{5}$ है ।

B. दशमलव (वर्गसंख्या) का वर्गमूल :

2) $\overline{05} \overline{33} \quad \overline{61}$

उदाहरण $11: 0.053361$ का वर्गमूल ज्ञात करो ।
हल : $0.053361=\frac{53361}{1000000}=\frac{53361}{10^{6}}$
43) 133
$\therefore 0.053361$ का वर्गमूल $= \pm \sqrt{\frac{53361}{10^{6}}}= \pm \frac{\sqrt{53361}}{\sqrt{10^{6}}}= \pm \frac{231}{10^{3}}= \pm 0.231 \overline{461)} \begin{gathered}461 \\ 461 \\ (\because 0.053361 \text { का वर्गमूल } \pm 231 \text { है ।) }\end{gathered}$
उदाहरण $12: 23.04$ का वर्गमूल ज्ञात करो ।
हल : 23.04 का वर्गमूल $=\frac{2304}{100}$ का वर्गमूल $= \pm \sqrt{\frac{2304}{100}}= \pm \frac{\sqrt{2304}}{\sqrt{100}}= \pm \frac{48}{10}= \pm 4.8$
$\therefore 23.04$ का वर्गमूल ± 4.8 है ।

विकल्प विधि :

4) $\quad 23.04$

16	
88$)$	704
704	
	0

$\therefore 23.04$ का वर्गमूल ± 4.8 है ।
704

6.9 आसन्न वर्गमूल निरूपण :

$1,4,9$ प्राकृत संख्याएँ पूर्णवर्ग हैं। इनका वर्गमूल भी प्राकृत संख्याएँ हैं । $\frac{1}{4}, \frac{1}{9}, \frac{4}{25}$ आदि वर्ग संख्याओं का वर्गमूल भी परिमेय संख्याएँ हैं । वर्ग संख्या के अलावा अन्य धनात्मक संख्याओं का वर्गमूल नहीं है, यह भी स्पष्ट है। जैसे : 2 का कोई वर्गूल नहीं है । फिगसे 2 के लिए 2.000.... लेकर विभाजन संक्रिया से इसका वर्गमूल ज्ञात करने का प्रयास करो ।

	1.414
1	$\overline{2} \overline{00} \overline{00} \overline{00}$
	(-1)
24	100
	-96
281	400
	-281
2824	11900
	-11296

इस प्रकार भाग देने की संक्रिया चलती रहेगी तो इसका कोई अंत नहीं है । अर्थात् परिमेय संख्या में 2 का कोई अंत नहीं हैं। (तुम्हें इसका तर्कमूलक प्रमाण बाद में ज्ञात होगा ।) अब हम वर्गमूल निरूपण के विभाजन-फल का विश्लेषण करेंगे ।

पूर्णसंख्या से भाग संक्रिया में फल $=1$ है और $(1)^{2}=1$, यह 2 से 1 कम् है ।
दशमलव के एक स्थान तक का फल $=1.4,(1.4)^{2}=1.96$
दशमलव के दो स्थानों तक का फल $=1.41,(1.41)^{2}=1.9881$, यह 2 से 0.0119 कम् है ।
ध्यान दो कि हम भाग की संक्रिया में अधिक से अधिक अंक तक बढ़ेंगे तो जो परिमेय भागफल मिलेगा, उसका वर्ग धीरे-धीरे 2 के निकट का होता जाता है । चूँकि विभाजन की संक्रिया में कोई निश्चित शेषफल नहीं आएगा, इसलिए 2 का कोई परिमेय वर्गमूल नहीं है। इसलिए हम कहते हैं।

दशमलव के एक स्थान तक 2 का आसन्न वर्गमूल $= \pm 1.4$ है ।
दशमलव के दो स्थानों तक 2 का आसत्र वर्गमूल $= \pm 1.41$ है ।
दशमलव के तीन स्थानों तक 2 का आसन्र वर्गमूल $= \pm 1.414 \ldots \ldots$. आदि ।
उसी प्रकार हम 3 या 3.0000..... का वर्गमूल भाग संक्रिया के द्वारा निरूपण करेंगे ।

यहाँ भी हमने देखा कि दशमवल के एक स्थान तक 3 का आसत्र वर्गमूल $= \pm 1.7$
दशमलव के दो स्थानों तक 3 का आसन्र वर्गमूल $= \pm 1.73$
दशमलव के तीन स्थानों तक 2 का आसन्र वर्गमूल $= \pm 1.732$

इस प्रकार वर्ग संख्या के अलावा किसी भी धनात्मक परिमेय संख्या का आसन्र वर्गमूल दशमलव में विभित्र स्थानों तक निरूपित हो सकेगा । निम्न उदाहरण देखो :
उदाहरण 13 :
2.8 का आसन्न वर्गमूल दशमलव के तीन स्थानों तक ज्ञात करो ।

1	$\begin{aligned} & \overline{2} \overline{80} \overline{00} \overline{00} \\ & (-) 1 \end{aligned}$	1.673
26	$\begin{array}{\|r\|} \hline \\ \hline \\ \hline(-) \\ \hline \end{array}$	
327	$\begin{array}{r} 2400 \\ (-) \quad 2289 \end{array}$	
3343	$\begin{gathered} 11100 \\ (-) \quad 10029 \\ \hline \end{gathered}$	
	1071	

दशमलव के तीन स्थान तक 2.8 ? का आसन्न वर्गमूल $= \pm 1.673$

उदाहरण 14 : $10 \frac{2}{3}$ का आसन्र वर्गमूल दशमलव ने तीन स्थान तक ज्ञात करो ।
हल : प्रथम प्रणाली : $10 \frac{2}{3}$ का दशमलव के छह स्थान तक आसन्र मान $=10.666667$
(टिप्पणी : दशलव के तीन स्थान तक आसन्न वर्गमूल आवश्यक है । इसलिए दी गई संख्या के दशमलव के छह स्थान तक आसन्न मान लिया गया है ।

	3.256
3	$\overline{10}, \overline{66}, \overline{66}, \overline{67}$ $-(9)$
62	166
	-124
646	4266
	-3876
6525	39067
	-32625
	6442

$\therefore 10 \frac{2}{3}$ का आसत्न वर्गमूल $= \pm 3.265$
दूसरीविधि : $10 \frac{2}{3}$ का आसन्न वर्गमूल

	9.797		
9	$\overline{96}, \overline{00}, \overline{00}, \overline{00}$		
	$(-) 81$	\quad	1500
:---			
187			
1949			
19587			

$= \pm \sqrt{10 \frac{2}{3}}$ का आसन्न मान
$=\sqrt{\frac{32}{3}}$ का आसत्र मान
$= \pm \sqrt{\frac{96}{9}}$ का आसत्र मान
$= \pm \frac{\sqrt{96}}{3}$ का आसन्न मान
$\therefore 10 \frac{2}{3}$ का आसन्न मान $= \pm \frac{9.797}{3}= \pm 3.266$

टिप्पणी : दशमलव के तीन स्थान तक आसत्र वर्गमूल ज्ञात करना हो तो दशमलव के चार स्थान पर आसत्र वर्गमूल ज्ञात करके उससे दशमलव के तीन स्थान तक आसन्र मान लेने पर उत्कृष्ट आसत्र मान मिलता है। जैसे : 10.66666667 का आसन्न वर्गमूल $= \pm 3.266$ है ।
उदाहरण $15: 1.5$ का वर्गमूल दशमलव के तीन स्थान तक ज्ञात करो ।
हल : 1)
$\overline{1} . \overline{50} \overline{00} \overline{00}$

(-) 484
2444) 11600
(-) 9776
1824
1.5 का आसन्न वर्गमूल $= \pm 1.224$

उदाहरण $16: \sqrt{3}=1.732$ हो तो $\frac{12}{5 \sqrt{3}}$ का आसत्र मान ज्ञात करो ।
हल $: \frac{12}{5 \sqrt{3}}=\frac{12 \sqrt{3}}{5 \sqrt{3} \sqrt{3}}=\frac{12 \sqrt{3}}{15}=\frac{12(1.732)}{15}=\frac{4(1.732)}{5}=\frac{6.928}{5}$

$$
=1.3856
$$

उदाहरण 17 : $\sqrt{2}=1.414$ हो तो $\frac{\sqrt{2}-1}{\sqrt{2}+1}$ का मान ज्ञात करो ।
हल : $\frac{\sqrt{2}-1}{\sqrt{2}+1}=\frac{(\sqrt{2}-1)(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}=\frac{(\sqrt{2}-1)^{2}}{(\sqrt{2})^{2}-(1)^{2}}=\frac{2+1-2 \sqrt{2}}{2-1}=\frac{3-2 \sqrt{2}}{1}$

$$
=3-2(1.414)=3-2.828=0.172
$$

उदाहरण $18: \sqrt{6}=2.449$ है $8 \sqrt{\frac{3}{2}}$ का मान ज्ञात करो ।
हल : $8 \sqrt{\frac{3}{2}}=8 \times \frac{\sqrt{3}}{\sqrt{2}}=\frac{8 \times \sqrt{3} \sqrt{2}}{\sqrt{2} \times \sqrt{2}}=\frac{8 \sqrt{6}}{2}$

$$
=4 \sqrt{6}=4(2.449)=9.796
$$

अभ्यास 6 (c)

1. कोष्ठिक में से सही उत्तर चुनकर शून्यस्थान भरो :

(a) 0.36 का वर्गमूल
।
(6.0, 0.6, 06, .006)
(b) 1.21 का वर्गमूल \qquad ($0.11,1.01,1.1,1.001$)
(c) $1 \frac{7}{9}$ का वर्गमूल $\left(1 \frac{1}{3}, 1 \frac{2}{3}, \frac{4}{9}, \frac{7}{3}\right)$
(d) 0.0009 का वर्गमूल
$(0.3,0.03,0.003,0.0003)$
(e) $6 \frac{1}{4}$ का वर्गमूल $\left(1 \frac{1}{2}, 2 \frac{1}{2}, 3 \frac{1}{2}, 4 \frac{1}{2}\right)$
2. वर्गमूल ज्ञात करो :
$289,361,784,6.25,12.96,19.36$ और 10.24
3. विभाजन द्वारा वर्गमूल ज्ञात करो :
$93025,99856,108241,74529,2256004,1879641$ और 53361

4. दशमलव की वर्गसंख्या का वर्गमूल ज्ञात करो :

$53.1441,36.3609,4.401604,0.9801$ और 5.4756
5. दी गई संख्या का वर्गमूल आसन्न दशमलव के तीन स्थान तक ज्ञात करो :
(i) 5 , (ii) 7 , (iii) 10 , (iv) 2.5 , (v) 3.6
6. दशमवल के तीन स्थान तक आसत्र वर्गमूल ज्ञात करो :
$1 \frac{1}{4}, 2 \frac{7}{9}, 4 \frac{1}{16}, 3 \frac{7}{25}$ और $4 \frac{9}{16}$
7. (i) $\sqrt{2}=1.414$ है $\frac{5}{\sqrt{2}}$ का मान ज्ञात करो ।
(ii) $\sqrt{3}=1.732$ है $\frac{8}{3 \sqrt{3}}$ का मान ज्ञात करो ।
(iii) $\sqrt{3}=1.732$ है $\frac{\sqrt{3}+1}{\sqrt{3}-1}$ का मान ज्ञात करो ।
(iv) $\sqrt{6}=2.449$ है $\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ का मान ज्ञात करो ।
(v) $\sqrt{6}=2.449$ है $\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$ का मान ज्ञात करो ।

6.10 वर्गमूल संबंधी विविध प्रश्न :

उदाहरण 19:2352 को किस संख्या से भाग देने से भागफल एक पूर्णवर्ग संख्या होगा ?
हल :

2	2352
2	1176
2	588
2	294
7	147
7	21
	3

$$
\begin{aligned}
2352 & =2 \times 2 \times 2 \times 2 \times 7 \times 7 \times 3 \\
& =2^{2} \times 2^{2} \times 7^{2} \times 3
\end{aligned}
$$

2352 को तीन से भाग देने से भागफल एक पूर्णवर्ग संख्या होगा।

उदाहरण 20 : किस संख्या के $\frac{1}{3}$ और $\frac{1}{4}$ का गुणनफल 108 होगा ?
हल : मानलो संख्या x है। x का $\frac{1}{3}=\frac{x}{3}, \mathrm{x}$ का $\frac{1}{4}=\frac{x}{4}$ है।
प्रश्न के अनुसार, $\frac{x}{3} \times \frac{x}{4}=\frac{x^{2}}{12}=108$

$$
\begin{aligned}
& \therefore \mathrm{x}^{2}=108 \times 12 \\
& \mathrm{x}= \pm \sqrt{108 \times 12}= \pm \sqrt{6 \times 6 \times 3 \times 3 \times 2 \times 2} \\
& = \pm(6 \times 3 \times 2)= \pm 36 \rightarrow x=36 \quad \therefore \text { संख्या } 36 \text { है । }
\end{aligned}
$$

उदाहरण 21:34967 से कौन सी क्षुद्रतम संख्या घटाने से वियोगफल एक पूर्णवर्ग संख्या होगा ?
हल : पहले 34967 का वर्गमूल ज्ञात करेंगे ।

1	$\begin{aligned} \overline{3} & \overline{49} \\ (-) 1 & \overline{49} \end{aligned}$	186
28	249	
	(-) 224	
366	2567	
	$(-) 2196$	
	371	

इस विभाजन की संक्रिया से ज्ञात हुआ कि 34967 , $(186)^{2}$ से अधिक है । अतएव 34967 से 371 घटाने से वियोगफल एक पूर्णवर्ग संख्या होगा ।

उदाहरण 22: 4931 में कौन-सी क्षुद्रतम संख्या जोड़ने से योगफल एक पूर्णवर्ग संख्या होगा ?
हल :

$\left.7$| 7 | $\overline{49} \overline{31}$
 49 |
| :--- | :--- |
| | 31 |
| 0 | | \right\rvert\,

हमने देखा कि 70 का वर्ग 4931 से क्षुद्रतर है । पर 71 का वर्ग 4931 से वृहत्तर है ।
$\therefore 4931$ के साथ 110 जोड़ने से योगफल एक पूर्णवर्ग संख्या होगा, वह है :
$(71)^{2}-4931=5041-4931=110$ । अर्थात् 4931 के साथ 110 जोड़ने से योगफल एक पूर्णवर्ग संख्या होगा। \therefore आवश्यक क्षुद्रतम संख्या 110 है।

अभ्यास 6 (d)

1. 1000 के निकटतम कौन-सी दो संख्याएँ पूर्णवर्ग संख्याएँ होंगी ?
2. एक विद्यालय में जितने छात्र थे, हर छात्र ने उतने 50 पैसे के सिक्के दिए । जब कुल 1250 रुपए वसूल हुए तो विद्यालय की छात्र-संख्या कितनी है ?
3. एक विद्यालय के छात्रों को वर्गाकार में खड़ा करने से 10 छात्र वच गए। विद्यालय की छात्र संख्या 1230 है, तब प्रत्येक पंक्ति में कितने छात्र खड़े हुए थे ?
4. 6912 को किस क्षुद्रतम संख्या से भाग देने या गुणा करने पर भागफल एक एक पूर्ण वर्ग संख्याएँ होंगी ?
5. किस संख्या के $\frac{2}{3}$ और $\frac{7}{8}$ का गुणनफल 1344 होगा ?
6. एक आयत की लम्बाई, चौड़ाई से तीन गुनी अधिक है । इसका क्षेत्रफल 972 वर्गमीटर है । आयत का परिमाप ज्ञात करो ।
7. एक आयत की लम्बाई, चौड़ाई से डेढ़ गुनी अधिक है । इसका क्षेत्रफल 1350 व. मिटर है । इसका परिमाप ज्ञात करो ।
8. एक आदमी ने अपने 400 वर्गमीटर और 441 वर्गमीटर के दो वर्गाकार जमीन के बदले एक वर्गाकार जमीन खरीदी । इसके चार ओर तार का बाड़ लगाने के लिए पाँच रुपए प्रतिमिटर की दर से कितना खर्च होगा ?
9. एक छात्रावास में जितने छात्र थे, प्रत्येक छात्र, छात्रसंख्या के पाँच गुने रुपए खाने का खर्च दिए तो कुल 72000 रुपए वसूल हुए। छात्र-संख्या ज्ञात करो ।
10. 18265 से कौन-सी क्षुद्रतम संख्या घटाने से वियोगफल एक पूर्व वर्ग संख्या होगा ?
11. 4515600 में कौन-सी क्षुद्रतम संख्या जोड़ने से योगफल एक पूर्णवर्ग संख्या होगा ?
12. एक वर्गाकार क्षेत्र का क्षेत्रफल 1336336 व.मी. है । क्षेत्र का परिमाप ज्ञात करो ।
6.11 संख्या का घन और पूर्ण घन संख्या : (Cube of a number and a perfect cube number) : हम जानते हैं कि $2^{3}=2 \times 2 \times 2=8$ ठम कहते है, 2 का घन $=8$ है ।

$$
\begin{aligned}
& 3^{3}=3 \times 3 \times 3=27 \text { हम कहते हैं कि } 3 \text { का घन }=27 \text { है । } \\
& 4^{3}=4 \times 4 \times 4=64 \text { हम कहते हैं कि } 4 \text { का घन }=64 \text { हैं. } \ldots \text { आदि । }
\end{aligned}
$$

नीचे की सारणी में प्रथम दस प्राकृत संख्याओं के घन दिए गए हैं ।
सारणी 6.3

संख्या	1	2	3	4	5	6	7	8	9	10
घन	1	8	27	64	125	216	343	512	729	1000

$1,8,27,64$ आदि प्राकृत संख्याओं को एक-एक पूर्ण घन संख्या कहा जाता है । यदि x एक प्राकृत संख्या है तो $\mathrm{n} \times \mathrm{n} \times \mathrm{n}=\mathrm{n}^{3}$ भी एक प्राकृत संख्या होगी । इसे $\left(\mathrm{n}^{3}\right.$ को) एक घन संख्या भी कहते हैं ।
$1,3,5,7 \ldots \ldots$ आदि विषम संख्याओं के घन प्रत्येक एक-एक विषम संख्या होगी और $2,4,6,8 \ldots \ldots$. आदि सम संख्याओं के घन भी एक एक सम संख्याएँ होंगी । (परीक्षण करके देखो ।)

नीचे की संरचना को देखकर कहो :

$$
\begin{aligned}
& 1=1=1^{3} \\
& 3+5=8=2^{3} \\
& 7+9+11=27=3^{3} \\
& 13+15+17+19=64=4^{3}
\end{aligned}
$$

$21+23+25+27+29=125=5^{3}$ आदि ।
10^{3} पाने के लिए क्या कुछ विषम संख्याओं को जोड़ने पड़ेगा ?
कोई भी संख्या घन संख्या है या नहीं उसे हम संख्या के गुणनखंडो से ज्ञात कर सकेंगे ।
उदाहरण 23: $128=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$

$$
\begin{align*}
& =(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times 2 \tag{1}\\
& =(2)^{3} \times(2)^{3} \times 2=(2 \times 2)^{3} \times 2=(4)^{3} \times 2
\end{align*}
$$

128 के गुणनखंडो को n^{3} के रूप में व्यक्त नहीं किया जा सका । अतएव यह एक घन संख्या नहीं है ।
टिप्पणी : (1) द्वारा चिन्हित चरण में दी गई संख्या के गुणनखंड निकालने से पता चला कि इसके गुणनफंड 7,2 हैं। 6,2 में से (2) ${ }^{3}$ प्राप्त हुआ एक गुणनखंड 2 बच गया । अतएव गुणनखंड n^{3} के रूप में व्यक्त नहीं हो सका । हमें पता चला कि चरण (1) में एक निश्चित अयुग्म गुणनखंड 3 का समापवर्त्य होने पर सख्या एक घन संख्या होगी । प्रश्न का हल निकलाते समय हमें हल के चारण निम्न रूप में दर्शाना होगा :
$128=\overline{2 \times 2 \times 2} \times \overline{2 \times 2 \times 2} \times 2 \quad \therefore 128$ एक घन संख्या नहीं है।

6.11.1 घन संख्या संबंधी सूत्र :

हमने पहले से यह घातांक नियम पढ़ा था, वह है :
$(\mathrm{a} \times \mathrm{b})^{\mathrm{n}}=\mathrm{a}^{\mathrm{n}} \times \mathrm{b}^{\mathrm{n}}$ जहाँ $\mathrm{a}, \mathrm{b} \in \mathrm{Q}$ और $\mathrm{n} \in \mathrm{N}$
यहाँ एक उपनिष्कर्ष होगा :

$$
\begin{equation*}
\text { सूत्र : }=\mathrm{a}^{3} \times \mathrm{b}^{3}=(\mathrm{a} \times \mathrm{b})^{3} \text { यदि } a, b \in N . \tag{1}
\end{equation*}
$$

उदाहरण 24:27000 एक घन संख्या है या नहीं परीक्षण करो । यदि संख्या एक घन संख्या हा तो यह किस संख्या का घन होगा ज्ञात करो ।
हल : $27000=\overline{2 \times 2 \times 2} \times \overline{3 \times 3 \times 3} \times \overline{5 \times 5 \times 5}=2^{3} \times 3^{3} \times 5^{3}$

$$
=(2 \times 3 \times 5)^{3}=(30)^{3}
$$

$\therefore 27000$ एक घनसंख्या है। यह 30 का घन है।
उदाहरण 25:392 को किस न्यूनतम संख्या से गुणा करने से गुणनफल एक घनसंख्या होगा ?
हल : $392=2 \times 2 \times 2 \times 7 \times 7=2^{3} \times 7^{2}$
$\therefore 392$ के गुणनखंडो में गुणनखंड 2 की संख्या = 3और गुणनखंड 7 की संख्या 2 है । अर्थात् 392 को कम-से-कम 7 से गुणा करने पर गुणनफल एक घन संख्या होगा ।

उदाहरण 26 : एक घनाकार बक्से के प्रत्येक किनारे की लंबाई 4 मीटर है । इसका आयतन ज्ञात करो । हाल : घनाकार बक्से का आयतन $=(\text { भुजा })^{3}$

$$
=(4)^{3} \text { घन मीटर }=4 \times 4 \times 4 \text { घ.मी. }=64 \text { घ.मी । }
$$

मैट्रिक माप की तालिका :
घनफल की माप की मैट्रिक इकाई की तालिका नीचे दी गई है ।
10 मी. मी. $=1$ से.मी., 1000 घ.मी.मी. $=1$ घ.से.मी.
10 से. मी. $=1$ डेसी.मी, 1000 घ.से.मी. $=1$ घ.डेसी.मी
10 डेसी.मी. $=1$ से.मी. $=1$ घ.मी

याद रखो :

(क) एक बर्तन का आयतन जितने घन डेसी मीटर होगा, उसमें आने वाले जल का परिमाण उतने लीटर होगा । अर्थात् 1 घ.डेसी.मी $=1000$ घन से.मी. $=1$ लीटर
(लीटर द्रव पदार्थ मापने की एक इकाई है ।)
(ख) एक बर्तन का आयतन जितने घन मीटर है, उसमें आनेवाले जल का परमिण उतने किलो लिटर या 1000 लीटर है ।
उदाहरण 27 : एक घनाकार पानी टंकी के भीतरी भाग की लंबाई 2 मीटर है । उसमें कितने लीटर पानी आएगा ?
हल : पानी टंकी का आयतन $=(\text { प्रत्येक किनारे की लंबाई })^{3}$

$$
=(2)^{3}=8 \text { घन मीटर }
$$

\therefore पानी का परिमाण $=8$ किलोलीटर $=8000$ लीटर है ।
1729 एक संख्या है जो दो भिन्न-भिन्न उपायों में दो घन संख्याओं के योगफल के रूप में व्यक्त हो सकेगी । जैसे : $\quad 1729=(12)^{3}+(1)^{3}=10^{3}+9^{3}$ (इसे Hardy- Ramajunam संख्या कहा जाता है । उसी प्रकार $4104=2^{3}+16^{3}=9^{3}+15^{3}$ और $13832=18^{3}+20^{3}=2^{3}+24^{3}$ । ऐसी अनेक संख्याएँ हम प्राप्त कर सकते हैं । इनमें से छोटी संख्या है : 1729 ।

अभ्यास 6 (e)

1. 11 से 20 तक सभी प्राकृत संख्याओं के घन ज्ञात करो ।
2. शून्यस्थान भरो :
(i) $(3)^{3} \times(4)^{3}=(\ldots \ldots .)^{3}$
(ii) $(5)^{3} \times(11)^{3}=(\ldots \ldots .)^{3}$
(iii) $(12)^{3} \times(5)^{3}=(\ldots \ldots .)^{3}$
(iv) $6^{3}=2^{3} \times(\ldots \ldots .)^{3}$
(v) $15^{3}=(\ldots \ldots .)^{3} \times(5)^{3}$
3. निम्न संख्याओं में से कौन-कौन-सी घन-संख्याएँ हैं ?

54, 216, 243, 218, 1331, 106480.
4. 675 को कम-से-कम किस संख्या से गुणा करने से गुणनफल एक घनसंख्या होगा ?
5. 8640 को कम-से -कम किस संख्या से भाग देने पर, भागफल एक घनसंख्या होगा ?
6. एक घन के किनारे की लंबाई 15 से.मी. है। इसका आयतन ज्ञात करो ।
7. एक घनाकार पानी टंकी की गहराई 2 मीटर है। इससे रोज 1000 लीटर पानी निकाल लेने पर कितने दिनों में पूरा पानी खतम हो जाएगा ?
8. 12 मीटर गहराई में एक घनाकार गड्ढा खोदने के लिए प्रति घन मीटर 25 रुपए की दर से कितना खर्च होगा ?
9. 3 के समापवर्त्य किन्हों पाँच प्राकृत संख्याओं का घन ज्ञात करो, और दर्शाओ कि 3 के समापवर्त्य किसी भी प्राकृत संख्या का घन, 27 का भी समापवर्त्य होगा।
10. दर्शाओ कि समसंख्या का घन एक सम संख्या है और विषम संख्या का घन एक विषम संख्या है।

6.12. घनमूल (Cube root):

हम जानते हैं कि $1,8,27,64 \ldots$. प्रत्येक एक एक घन-संख्या हैं।
अर्थात् $1=1^{3}, 8=2^{3}, 27^{3}=64=4^{3}$ आदि...
हम $1,8,27 \ldots$ आदि प्राकृत संख्याओं को क्रमश $1,2,3 \ldots$ आदि प्राकृत संख्याओं का घन कहते हैं।
दूसरी ओर हम $1,2,3,4, \ldots$ आदि प्राकृत संख्या को क्रमशः $1,8,27,64$ आदि का घनमूल कहते है।

परिभाषा : (प्राकृत संख्या में)

m और n प्राकृत संख्याएँ हैं और $\mathrm{n}=\mathrm{m}^{3}$ है, तब m को n का घनमूल कहते हैं ।
नीचे सारणी में प्रथम दस घनात्मक घन संख्यओं के घनमूल दिए गए हैं।

$$
\text { सारणी- } 6.4
$$

घनसंख्या (n)	1	8	27	64	125	216	343	512	729	1000
n का घनमूल	1	2	3	4	5	6	7	8	9	10

घनमूल के लिए प्रयुक्त चिह्न है
जैसे $\sqrt[3]{8}=2, \sqrt[3]{27}=3$ आदि ।

6.12.1 घनमूल ज्ञात करने की विधि:

निम्नलिखित प्राकृत संख्याओं (घन संख्या) के घनमूल कैसे ज्ञात किया गया है, ध्यान दो ।
(a) $216=2 \times 2 \times 2 \times 3 \times 3 \times 3=2^{3} \times 3^{3}=(2 \times 3)^{3}$
$\therefore \sqrt[3]{216}=2 \times 3=6$
(b) $1728=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3$
$=2^{3} \times 2^{3} \times 3^{3}=(2 \times 2 \times 3)^{3}=(12)^{3}$
$\therefore \sqrt[3]{1728}=2 \times 2 \times 3=12$
(c) $1157625=3 \times 3 \times 3 \times 5 \times 5 \times 5 \times 7 \times 7 \times 7=3^{3} \times 5^{3} \times 7^{3}$
$\therefore \sqrt[3]{1157625}=3 \times 5 \times 7=105$

उदाहरण-28 घनमूल ज्ञात करो : (i) 2744 (ii) 10,000 ।
समाधान
(i) $2744=2 \times 2 \times 2 \times 7 \times 7 \times 7=2^{3} \times 7^{3}=(2 \times 7)^{3}$

$$
\therefore \sqrt[3]{2744}=2 \times 7=14
$$

(ii) $10,00,000=10^{3} \times 10^{3}$

$$
\therefore \sqrt[3]{10,00,000}=10 \times 10=100
$$

उदाहरण-29: 26244 को किस क्षुद्रतम संख्या से भाग देने पर भागफल एक घनसंख्या होगा ? उस भागफल का घनमूल ज्ञात करो ।

हल: $26244=2 \times 2 \times \overline{3 \times 3 \times 3} \times \overline{3 \times 3 \times 3} \times 3 \times 3=3^{3} \times 3^{3} \times 3^{2} \times 2^{2}=2^{2} \times 3^{2}=4 \times 9=36$
\therefore उस संख्या को 36 से भाग देने पर भागफल $3^{3} \times 3^{3}$ होगा । यह एक घन संख्या है ।
इसका घनमूल है $3 \times 3=9$
एक पूर्ण घनसंख्या का घनमूल ज्ञात करने की एक संक्षिप्त विधि :
हम 857375 का घनमूल ज्ञात करोंगे :
चरण-1: $\overline{857} \overline{375}$ के दाईं ओर से तीन-तीन के हिसाब से संख्या लेकर एक एक संख्या त्रिक बनाओ ।
चरण-2: प्रथम त्रिक $(\overline{375})$ से हम घनमूल की इकाई का स्थान प्राप्त कर सकेंगे । त्रिक की इकाई के स्थान पर अंक 5 है । तब घनमूल की इकाई के स्थान पर अंक होगा 5 ।
चरण-3: अब हम द्वितीय-त्रिक ' 857 ' को लेंगें ।
हम जानते हैं कि $9^{3}=729,10^{3}=1000,729<857<1000$
चरण-4: अब 729 का घनमूल 9 है । तब घनमूल की दहाई के स्थान पर अंक होगा $9 \sim$ अर्थात् 857375 का घनमूल 95 होगा । $\therefore \sqrt[3]{857375}=95$ हैं
खुद करो: उपर्युक्त संक्षिप्त विधि का प्रयोग करके निम्न संख्याओं के घनफल ज्ञात करो ।
(i) 17576
(ii) 12167
(iii) 32768
(iv) 4913

अभ्यास- 6(f)

1. घनमूल ज्ञात करो ।
(i) 343
(ii) 1000
(iii) 74088 (iv) 157464
(v) $8,000,000$
2. 2744 को किस क्षृद्रतम संख्या से गुणा करने से गुणनफल एक पूर्ण घनसंख्या होगा । उस घनसंख्या का घनमूल ज्ञात करो ।
3. 5488 को किस क्षुद्रतम संख्या से भाग देने पर भागफल एक पूर्ण घनसंख्या होगा । उक्त भागफल का घनमूल ज्ञात करो ।
4. एक घन का आयतन 512 घनमीटर है । इसके आधार का क्षेत्रफल ज्ञात करो ।
5. 53240 को किस क्षुद्रतम संख्या से भाग देने पर भागफल एक पूर्ण घनसंख्या होगा ? किस क्षुद्रतम संख्या से गुणा करने पर गुणनफल एक पूर्ण घनसंख्या होगा ?

6.12.2 ऋणात्मक पूर्णसंख्या का घन और घनमूल

$-1,-2,-3 \ldots$ प्रत्येक ऋणात्मक पूर्णांक हैं ।
इनके घन निम्न प्रकार से हैं ।
$(-1)^{3}=(-1) \times(-1) \times(-1)=-1,(-2)^{3}=(-2) \times(-2) \times(-2)=-8$ और
$(-3)^{3}=(-3) \times(-3) \times(-3)=-27$
इसी प्रकार $(-4)^{3}=-64,(-5)^{3}=-125,(-6)^{3}=-216$ ।
ध्यान दो, ऋणात्मक पूर्णांक का घन ऋणात्मक पूर्णांक होगा ।
$-1,-8,-27 \ldots$ आदि एक एक घन संख्या हैं । इनका घनमूल क्रमश: $-1,-2$, और $-3 \ldots$ हैं ।
परिभाषा : m और n पूर्णांक हैं $\mathrm{l}=\mathrm{m}^{3}$ हो m को n का घनमूल कहते हैं ।
टिप्पणी: $(2)^{2}=4$ और $(-2)^{2}=4$ है । अर्थात् 4 के दो वर्गमूल हैं।
प्रत्येक वर्ग संख्या के दो वर्गमूल हैं ।
$(2)^{3}=8$ दे ।
अतएव 8 का एक मात्र घनमूल है । वह है 2 ।
प्रत्येक घनसंख्या का एक ही वास्तव घनमूल है ।
वि.द्र: बाद में तुम्हे ज्ञात होगा कि प्रत्येक घनसंख्या के कुल तीन घनमूल होते हैं। उनमें से दो भिन्न प्रकार के हैं ।

उदाहरण-30 : (-15) का घन ज्ञात करो ।
हल : $\quad(-15)^{3}=(-15) \times(-15) \times(-15)=-3375$
उदाहरण-31 : (-1331) का घनमूल ज्ञात करो।
हल : 1331 के गुणनखंड हैं : $11 \times 11 \times 11$

$$
\begin{aligned}
& \therefore \quad(-1331)=(-11) \times(-11) \times(-11)=(-11)^{3} \\
& =\sqrt[3]{1331}=-11
\end{aligned}
$$

6.12.3 घनमूल संबंधी कुछ सूत्र

उदाहरण-32: $\sqrt[3]{27 \times 64}$ और $\sqrt[3]{27} \times \sqrt[3]{64}$ में क्या अंतर है ?
हल : $27 \times 64=3 \times 3 \times 3 \times 4 \times 4 \times 4$

$$
\begin{aligned}
& =(3 \times 4)(3 \times 4)(3 \times 4)=12^{3} \\
& =\sqrt[3]{27 \times 64}=\sqrt[3]{(12)^{3}}=12
\end{aligned}
$$

फिर $\sqrt[3]{27}=\sqrt[3]{3 \times 3 \times 3}=3$ और $\sqrt[3]{64}=\sqrt[3]{4 \times 4 \times 4}=4$
$\sqrt[3]{27} \times \sqrt[3]{64}=3 \times 4=12$
$\therefore \sqrt[3]{27 \times 64}$ और $\sqrt[3]{27} \times \sqrt[3]{64}$ दोनों बराबर हैं।
उदाहरण-33: दर्शाओ :
हल: (a) $\sqrt[3]{(-125) \times 216}=\sqrt[3]{(-215)} \times \sqrt[3]{216}$
(b) $\sqrt[3]{27 \times(-2744)}=\sqrt[3]{27} \times \sqrt[3]{-2744}$
(c) $\sqrt[3]{(-125) \times(-1000)}=\sqrt[3]{-125} \times \sqrt[3]{-1000}$

हल :
(a) $-125 \times 216=-(125 \times 216)=-(5 \times 5 \times 5 \times 6 \times 6 \times 6)$
$=-(5 \times 6) \times(5 \times 6) \times(5 \times 6)=-(30) \times(30) \times(30)$
$=-(30)^{3}$ (ऋणात्मक संख्या का घन भी ऋणात्मक होगा)
$\therefore \sqrt[3]{(-125 \times 216)}=\sqrt[3]{(-30)^{3}}=-30$
फिर $\sqrt[3]{(-125)} \times \sqrt[3]{(216)}$
$=\sqrt[3]{(-5) \times(-5) \times(-5)} \times \sqrt[3]{6 \times 6 \times 6}=(-5) \times 6=-30$
$\therefore \sqrt[3]{(-125 \times 216}=\sqrt[3]{(-125)} \times \sqrt[3]{216} \quad$ (सत्यापित)
(b) $27 \times-2744=-(27 \times 2744)=-(3 \times 3 \times 3 \times 14 \times 14 \times 14)$
$=-(3 \times 14) \times(3 \times 14) \times(3 \times 14)=-(42) \times(42) \times(42)$
$=-(42)^{3}=(-42)^{3}$
$\therefore \sqrt[3]{27 \times(-2744)}=\sqrt[3]{(-42)^{3}}=-42$
फिर $\sqrt[3]{27} \times \sqrt[3]{-2744}$
$=\sqrt[3]{3 \times 3 \times 3} \times \sqrt[3]{(-14) \times(-14) \times(-14)}=3(-14)=-42$
$\therefore \sqrt[3]{27 \times(-2744)}=\sqrt[3]{27} \times \sqrt[3]{-2744} \quad$ (सत्यापित)
(c) $(-125) \times(-1000)=125 \times 1000$
$=5 \times 5 \times 5 \times 10 \times 10 \times 10=(5 \times 10) \times(5 \times 10) \times(5 \times 10)$
$50 \times 50 \times 50=(50)^{3} \quad \therefore \sqrt[3]{(-125) \times(-1000)}=\sqrt[3]{(50)^{3}}=50$
फिर $\sqrt[3]{(-125)}=\sqrt[3]{(-5) \times(-5) \times(-5)}=-5$ और $\sqrt[3]{(-1000}=\sqrt[3]{(-10) \times(-10) \times(-10)}=-10$
$\sqrt[3]{(-125)} \times \sqrt[3]{(-1000)}=(-5) \times(-10)=50$
$\therefore \sqrt[3]{(-125) \times(-1000)}=\sqrt[3]{(-125)} \times \sqrt[3]{-1000} \quad$ (सत्यापित)
हमने उपर्युक्त उदाहरणों से देखा:
सूत्र : जब a और b दोनों घनसंख्या हों, तब $\sqrt[3]{a \times b}=\sqrt[3]{a} \times \sqrt[3]{b}$ होगा ।
उदाहरण-34 : मान ज्ञात करो : (i) $\sqrt[3]{16 \times 32}$ (ii) $\sqrt[3]{(-12)} \times 18$
हल : (i) $\sqrt[3]{16 \times 32}=\sqrt[3]{2^{4} \times 2^{3}}=\sqrt[3]{29}=2^{3}=8$
(ii) $\sqrt[3]{(-12)} \times 18=\sqrt[3]{-(2 \times 2 \times 3) \times 2 \times 3 \times 3}=\sqrt[3]{-(2 \times 3)^{3}}=(-2 \times 3)=-6$

सूत्र:
यदि $\mathrm{a}, \mathrm{b}, \mathrm{c}$ पूर्णांक हो, और $\mathrm{ab}=\mathrm{c}^{3}$ हो, तब $\sqrt[3]{a b}=c$ होगा ।

अभ्यास-6(g)

1. निम्नलिखित संख्याओं के घनमूल ज्ञात करो :
$-1, \quad-125, \quad-5832, \quad-17576, \quad-2744000$ घनमूल ज्ञात करो । (प्र.-2 से प्र. -11 तक)
2. 8×64
3. $(-216) \times(1728)$
4. $343 \times(-512)$
5. $(-125) \times(-3375)$
6. 729×15625
7. -456533
8. 216000
9. 28×98
10. $(-27) \times 27$
11. $(-24) \times(-72)$
12. निम्नलिखित संख्याओं में से जो जो घनसंख्याएँ हैं, उनके घनमूल ज्ञात करो । -64, -1056, -1728, -2197, -3888
13. सरल करो:
(i) $\sqrt[3]{-216 \times 125}$
(ii) $\sqrt[3]{-512 \times 729}$
(iii) $\sqrt[3]{-1728 \times 15625}$ (iv) $\sqrt[3]{-1000 \times 512}$
6.13 परिमेय संख्याओं का घन ज्ञात करना :

हम जानते हैं कि p और q पूर्णांक और $\mathrm{q} \neq 0$ हो, तो $\frac{p}{q}$ एक परिमेय संख्या होगी \uparrow जैसे : $\frac{1}{3}, \frac{2}{5} \frac{-5}{11}$ आदि ।

उदाहरण-35 : मान ज्ञात करो: (i) $\left(\frac{2}{5}\right)^{3}(i i)\left(\frac{-5}{11}\right)^{3}($ iii $)(004)^{3}$
हल : (i) $\left(\frac{2}{5}\right)^{3}=\frac{2}{5} \times \frac{2}{5} \times \frac{2}{5}=\frac{2^{3}}{5^{3}}=\frac{8}{125}$
(ii) $\left(\frac{-5}{11}\right)^{3}=\left(\frac{-5}{11}\right) \times\left(\frac{-5}{11}\right) \times\left(\frac{-5}{11}\right)=\frac{-5 \times(-5) \times(-5)}{11 \times 11 \times 11}=\frac{(-5)^{3}}{11^{3}}=\frac{-125}{1331} \quad$ (उत्तर)
(iii) $(0.04)^{3}=0.04 \times 0.04 \times 0.04$

$$
=\frac{4}{100} \times \frac{4}{100} \times \frac{4}{100}=\frac{64}{1000000}=0.000064 \text { (उत्तर) }
$$

ध्यान दो: मूल संख्या में दो दशमलव के स्थान हो तो उसके घन में छह दशमलव के स्थान हैं ।
परिमेय संख्या में गुणा के संवृत्त नियम से स्पष्ट होता है कि परिमेय संख्या का घन भी एक परिमेय संख्या है ।

फिर $\mathrm{p}, \mathrm{q} \in \mathrm{z}$ और $\mathrm{q} \neq 0$ हो तो $\left(\frac{p}{q}\right)^{3}=\frac{p}{q} \times \frac{p}{q} \times \frac{p}{q}==\frac{p^{3}}{q^{3}}$ (परिमेय संख्या में गुणा का नियम)
सूत्र: $\mathrm{p}, \mathrm{q} \in \mathrm{z}$ और $\mathrm{q} \neq 0$ हो तो $\left(\frac{p}{q}\right)^{3}=\frac{p^{3}}{q^{3}}$

6.14 परिमेय संख्या का घनमूल ज्ञात करना :

हम जानते है : $\frac{27}{64}=\frac{3^{3}}{4^{3}}=\left(\frac{3}{4}\right)^{3}$ अतएव $\sqrt[3]{\frac{27}{64}}=\frac{3}{4}$
यहाँ $\frac{3}{4}, \frac{27}{64}$ का घनमूल है ।
उसी प्रकार $\frac{-125}{1331}=\left(\frac{-5}{11}\right)^{3}=\sqrt[3]{\frac{-125}{1331}}=\frac{-5}{11}$

ध्यान दो :

(i) एक परिमेय संख्या का घनमूल ज्ञात करते समय अंश के घनमूल को अंश के रूप में और हर के घनमूल को हर के रूप में लेकर दी गई परिमेय संख्या का घनमूल ज्ञात करना होगा ।
(ii) परिमेय संख्या ऋणात्मक हो, तो घनमूल भी ऋणात्मक होगा ।
(iii) जिस परिमेय संख्या के अंश और हर दोनों घनसंख्या हैं, उस परिमेय संख्या का घनमूल ज्ञात किया जा सकेगा ।

सूत्र:
$\mathrm{p}, \mathrm{q} \in \mathrm{z}$ और $\mathrm{q} \neq 0$ हो, तो $\mathrm{p}=\mathrm{m}^{3}, \mathrm{q}=\mathrm{n}^{3}$ हो, तो $\sqrt[3]{\frac{p}{q}}=\frac{m}{n}$
अभ्यास- 6(h)

1. घन ज्ञात करो :
(i) $\frac{7}{9}$, (ii) $\frac{-8}{11}$, (iii) $\frac{12}{7},(i v) \frac{-13}{8},(v) 2 \frac{3}{5}$, (vi) $3 \frac{1}{4}$, (vii) $-1 \frac{2}{3}$
(viii) 0.2 (ix) 1.3, (x) 0.03
2. घनमूल ज्ञात करो :
(i) $\frac{8}{125}$, (ii) $\frac{-64}{1331}$, (iii) $\frac{-27}{4096}$, (iv) $\frac{2197}{9261}$,
(v) 0.001 , (vi) 0.008 , (vii) 1.728, (viii) 0.000125
3. निम्नलिखित में से कौन सी संख्या किस परिमेय संख्या का घन है ?
(i) $\frac{27}{64}$, (ii) $\frac{125}{128}$, (iii) $\frac{-216}{729}$,(iv) $\frac{-250}{686}$,
(v) 0.8 , (vi) 0.125 , (vii) 0.1331

समीकरण और इसका हल (EQUATION AND IT'S SOLUTION)

अध्याय

 7
7.1 भूमिका (Introduction) :

'बीजीय व्यंजक और सर्वसमिकाएँ' अध्याय में तुम्हें ज्ञात हुआ है कि सर्वसमिका क्या है और यह कैसे एक समीकरण से भिन्न है। पिछली कक्षा में तुम अज्ञात व्यंजक वाले समीकरण के उत्पन्न होने और उसके हल के बारे में भी जान चुके हो। अब इस अध्याय में एक अज्ञात व्यंजकवाले एक घात समीकरण के साथ द्विघात समीकरण की चर्चा की जाएगी । पहले के अध्याय में तुमने द्विघात पलिनोमिचल के गुणनखंड के संबंध में पढ़ा है । इस अध्याय में द्विघात समीकरण के हल के बारे में चर्चा की जाएगी ।

7.2 समीकरण और सर्वसमिका (Equation and Identity) :

एक अज्ञात व्यंजकवाले दो बीजीय व्यंजक $5 x-2$ और $2 x+1$ लेकर एक उक्ति $5 x-2=2 x$ +1 (यहाँ x एक अज्ञात चर है ।) बनाई जाए। अब x के स्थान पर एक पूर्णांक लेकर उस उक्ति को सत्यापित करेंगे ।

अब $x=1$ लेकर उक्ति को सत्यापित करेंगें ।
बायाँ पक्ष $=5 x-1=5 \times 1-2=5-2=3$
दायाँ पक्ष $=2 x+1=2 \times 1+1=2+3=3$
$\therefore 5 x-2=2 x+1$ उक्ति में $x=1$ सत्य है ।
यदि $x=2$ लें तो बायाँ पक्ष $=5 x-2=5 \times 2-2=10-2=8$
दायाँ पक्ष $=2 x+1=2 \times 2+1=4+1=5$
अर्थात x का मान 2 लें तो $5 x-2=2 \mathrm{x}+1$ उक्ति सही नहीं हैं।

उसी प्रकार $x=0,-1,-3$ आदि लें तो यह उक्ति सत्यापित नहीं है सकती । (परीक्षण करके देखो ।) ऊपर के सत्यापन - परीक्षण से यह स्पष्ट होता है कि अज्ञात चर x के स्थान पर 1 लें तो उक्ति सत्यापित होती है। दूसरे मानों के लिए उक्ति सत्य नहीं हैं।

यहाँ $5 x-2=2 x+1$ उक्ति को एक समीकरण (equation) कहते हैं। यहाँ x एक अज्ञात चर हैं।
टिप्पणी: समीकरणों में एक अज्ञात चर या एक से अधिक चर आ सकते हैं। अज्ञात चरों को सामान्यतया x, y, z आदि संकेतों द्वारा चिह्नित किया जाता है ।

मान लो एक उक्ति में एक अज्ञात चर x है। यदि वह उक्ति अज्ञात चर ' x ' के किसी मान (identity) के लिए सत्य है, तब उसे एक सर्वसमिका कहते हैं ।

उदाहरण के रूप में : $3 x+2 x=5 x,(4 x+2)-2 x=2(x+1)$ आदि एक एक सर्वसमिकाएँ हैं ।

7.3 समीकरण का घात (Power of an equation) :

समीकरण के पदों में उपलब्ध अज्ञात चर के सर्वोच्च घात को समीकरण का घात कहते हैं ।
उदाहरण: $5 x=10,2 x+1=-3$ आदि एक एक अज्ञात चरवाले एक घात समीकरण हैं। उसी प्रकार $x^{2}=36,2 x^{2}+3 x-5=0$ आदि समीकरण द्विघाती समीकरण हैं।

7.4 समीकरण का बीज (Roots of an equation) :

समीकरण में जो अज्ञात चर रहता है, उसके जिस निश्चित मान के लिए समीकरण सत्य है, उसे उक्त समीकरण का बीज (root) कहते हैं ।
$2 x=6$ समीकरण में बीज 3 हैं।
क्योंकि उक्ति में x का मान 3 के लिए सत्य है ।
समीकरण के बीज को ज्ञात करने की प्रक्रिया को समीकरण का हल कहा जाता है।
याद रखो: समीकरण की घात-संख्या उसकी बीज-संख्या के बराबर है। अर्थात् n घात वाले समीकरण की बीज संख्या n होगी ।

अर्थात् एक घात समीकरण की बीज संख्या 1 है। द्विघात समीकरण की बीज संख्या 2 होगी । 7.5 एक अज्ञात चरवाले एक घात समीकरण का समाधान (Solution of a Linear equation in one variable) :

नीचे कुछ अज्ञात चरवाले एक घात समीकरणों के उदाहरण दिए गए:
(a) $x+3=4$
(b) $2(x-1)=10$
(c) $\frac{x-5}{2}-1=\frac{2 x-1}{7}$

एक घात समीकरण का सामान्य रूप है : $\mathrm{a} x+\mathrm{b}=0$ (यहाँ $(a \neq 0)$ । a चर, x का संख्यात्मक गुणांक है । b अचर है ।

समीकरण के हल के लिए प्रयुज्य स्वतः सिद्ध है :
(a) बराबर चर के साथ बराबर चर जोड़ने से योगफल भी बराबर होगा।
(b) बराबर चर से बराबर चर घटाने से वियोग फल भी बराबर होगा।
(c) बराबर चर को बराबर चर से गुणा करने से गुणनफल भी बराबर होगा।
(d) बराबर चर को बराबर चर से (शून्य के अलावा) भाग देने से भागफल भी बराबर होगा। उदाहरण-1 :

1. हल करो :
(i) $2 x-3=7$
(ii) $2 \mathbf{y}+9=4$

हल : (i) $2 x-3=7$
$\Rightarrow 2 x-3+3=7+3$ (दोनों पक्षों में 3 जोड़ने से)
$\Rightarrow 2 x=10=\frac{2 x}{2}=\frac{10}{2}$ (दोनों पक्षों को 2 से भाग देने से)
$\therefore x=5$ (इस समीकरण का 5 बीज है।
हल : (ii) $2 \mathrm{y}+9=4$
$\Rightarrow 2 y+9-9=4-9$ (दोनों पक्षों से 9 घटाने से)
$\Rightarrow 2 \mathrm{y}=-5=\frac{2 y}{2}=\frac{-5}{2} \Rightarrow \mathrm{y}=\frac{-5}{2}$ (दोनों पक्षों का 2 से भाग देने से)
\therefore उक्त समीकरण का बीज $\frac{-5}{2}$ है ।
ध्यान दो : उदाहरण (i) में बाएँ पक्ष से -3 को हटाने के बाद दाएँ पक्ष में +3 हो गया। (ii) उदाहरण में बाएँ पक्ष से 9 हटाने से दाएँ पक्ष में (-9) मिला ।

इससे स्पष्ट होता है कि किसी पद का पक्ष परिवर्तन (बाएँ पक्ष से दाएँ पक्ष में या दाएँ पक्ष से बाएँ पक्ष में) करते समय संक्रिया का भी परिवर्तन हो जाता है। अर्थात् योग को व्यवकलन और ब्यवकलन को योग, भाग को गुणा और गुणा को भाग करना होता है ।
उदाहरण-2: हल करो
(i) $\frac{x}{3}=4$
(ii) $3 x=15$
(iii) $\frac{x}{2}+\frac{x}{3}-1=4$

हल : (i) $\frac{x}{3}=4 \Rightarrow \frac{x}{3} \times 3=4 \times 3$ (दोनों पक्षों को उसे गुणा करने से)

$$
\Rightarrow x=12
$$

ध्यान दो बाएँ पक्ष से 3 भाजक को हटाने के बाद दाएँ पक्ष में उस भाजक का गुणा किया जाता है ।
(ii) $3 x=15 \rightarrow \frac{3 x}{3}=\frac{15}{3}$ (दोनों पक्षों को 3 से भाग देने पर)

$$
\Rightarrow x=5
$$

ध्यान दोः बाएँ पक्ष से x के संख्यात्मक गुणांक 3 को हटाने के बाद दाएँ पक्ष में 3 भाजक के रूप में रहा ।
(iii) $\frac{x}{2}+\frac{x}{3}-1=4$

$$
=\frac{3 x+2 x}{4}-1=4 \Rightarrow \frac{5 x}{6}-1=4
$$

$\Rightarrow\left(\frac{5 x}{6}-1\right)+1=4+1 \quad$ (दोनो पक्षों में 1 जोडने से)
$\Rightarrow \frac{5 x}{6}=5=\frac{5 x}{6} \times 6=5 \times 6$ (दोनों पक्षों को 6 से गुणा करने पर)
$\Rightarrow 5 x=30 \Rightarrow \frac{5 x}{5}=\frac{30}{5}$ दोनो पक्षों को 5 से भाग देने पर) $\Rightarrow x=6$
ऊपर के दोनों उदाहरणों से स्पष्ट होता है कि किसी पद का पक्ष-परिवर्तन करने से उस पद की संक्रिया में परिवर्तन होता हैं ।
खुद्र हल करो :
(i) $2 x-3=4$
(ii) $3 x+\frac{1}{2}=\frac{3}{8}$
(iii) $2 x+\frac{3}{4}=x-\frac{1}{4}$
(iv) $0.3(6+y)=0.4$
(v) $\frac{3 x}{5}+1=\frac{2}{5}$
7.5.1 एक अज्ञात चरवाले एक घात समीकरण का हल करने के लिए सूचना:
(i) अज्ञात चरवाले सभी पदों को बाएँ पक्ष में और ज्ञात अचर पदों को दाएँ पक्ष में ले लिया जाता है ।
(ii) बाएँ पक्ष के एकाधिक अज्ञात चरवाले पदों को इकट्ठा करके एक पद बनाया जाता है । शेष पदों को दाएँ पक्ष में इकट्ठा किया जाता है ।
(iii) बाएँ पक्ष में बने पद $\left(\operatorname{ax}\right.$ या $\left.\frac{a}{x}\right)$ से x (अज्ञात चर) का मान ज्ञात किया जाता है । निम्न उदाहरणों को ध्यान से देखो :

उदाहरण-3: हल करो $2 x-3=x+2$
हल : $2 x-3=x+2 \Rightarrow 2 x-3+3=x+2+3$ (दोनों पक्षों में 3 जोड़ने से)
$\Rightarrow 2 \mathrm{x}=\mathrm{x}+5 \Rightarrow 2 \mathrm{x}-\mathrm{x}=5$ (दोनों पक्षों से x घटाने से)
$\Rightarrow \mathrm{x}=5$
उदाहरण-4 : हल करो : $\frac{5 x}{2}-\frac{7}{2}=\frac{3 x}{2}-4$
हल : $\frac{5 x}{2}-\frac{7}{2}=\frac{3 x}{2}-4 \quad \Rightarrow \frac{5 x}{2}=\frac{3 x}{2}-4+\frac{7}{2}$ (दोनों पक्षों में $\frac{7}{2}$ जोड़ने से)

$$
\begin{aligned}
& \Rightarrow \frac{5 x}{2}-\frac{3 x}{2}=-4+\frac{7}{2} \quad \text { (दोनों पक्षों में } \frac{3 x}{2} \text { जोड़ने से) } \\
& \Rightarrow \frac{5 x-3 x}{2}=\frac{-8+7}{2} \Rightarrow \frac{2 x}{2}=\frac{-1}{2} \Rightarrow x=\frac{-1}{2}
\end{aligned}
$$

उदाहरण-5: हल करो : $\frac{6 x+1}{3}+1=\frac{x-3}{6}$
हल : $\frac{6 x+1}{3}+1=\frac{x-3}{6} \Rightarrow \frac{6 x+1+3}{3}=\frac{x-3}{6} \Rightarrow \frac{6 x+4}{3}=\frac{x-3}{6}$
$\Rightarrow\left(\frac{6 x+4}{3}\right) \times 6=\frac{x-3}{6} \times 6$ (दोनों पक्षों में 6 गुणा करने से $\therefore 3$ और 6 का समापवर्त्य 6 है)
$\Rightarrow 12 \mathrm{x}+8=\mathrm{x}-3 \Rightarrow 12 \mathrm{x}-\mathrm{x}+8=-3$ (दोनों पक्षों में x घटाने से)
$\Rightarrow 11 \mathrm{x}=-3-8$ (दोनों पक्षों में 8 घटाने से)
$\Rightarrow 11 x=-11 \Rightarrow x=\frac{-11}{11}$ (दोनों पक्षों में 11 से भाग देने से)
$\Rightarrow x=-1$
उदाहरण-6: हल करो : $\frac{3 x+5}{7 x-3}=\frac{4}{5}$
हल $:=\frac{3 x+5}{7 x-3}=\frac{4}{5}$
$\Rightarrow 5(3 \mathrm{x}+5)=4(7 \mathrm{x}-3) \quad$ (वज्रगुणन करने से)
$\frac{A}{B}=\frac{C}{D} \Rightarrow \mathrm{AD}=\mathrm{BC}(\mathrm{B} \neq 0, \mathrm{D} \neq 0)$ इसे वज्रगुणन संक्रिया कहते हैं ।
$\Rightarrow 15 \mathrm{x}+25=28 \mathrm{x}-12$
$\Rightarrow 15 \mathrm{x}-28 \mathrm{x}+25=-12(-28 \mathrm{x}$ का पक्ष बदला)
$\Rightarrow-13 \mathrm{x}=-12 \quad-25$ (25 का पक्ष बदला)
$\Rightarrow x=\frac{-37}{-13}$ (दोनों पक्षों से -13 भाग देने से)
$\Rightarrow x=\frac{37}{13} \Rightarrow x=2 \frac{11}{13}$
उदाहरण-7 : हल करो : $\mathrm{z}(\mathrm{z}+6)=\mathrm{z}(\mathrm{z}+7)-6$
हल:

$$
\begin{aligned}
& \mathrm{z}(\mathrm{z}+6)=\mathrm{z}(\mathrm{z}+7)-6 \\
& \Rightarrow \mathrm{z}^{2}+6 \mathrm{z}=\mathrm{z}^{2}+7 \mathrm{z}-6 \\
& \Rightarrow \mathrm{z}^{2}+6 \mathrm{z}-\mathrm{z}^{2}=\mathrm{z}^{2}+7 \mathrm{z}-6-\mathrm{z}^{2} \text { (दोनों पक्षों से } \mathrm{z}^{2} \text { घटाने से) } \\
& \Rightarrow 6 \mathrm{z}-7 \mathrm{z}=7 \mathrm{z}-6-7 \mathrm{z} \quad \text { (दोनों पक्षों से } 7 \mathrm{z} \text { घटाने से) } \\
& \Rightarrow-\mathrm{z}=-6=\mathrm{z}=6 \text { (दोनों पक्षों से }-1 \text { गुणा करने से) }
\end{aligned}
$$

टिप्पणी: समीकरण का हल कर चुकने के बाद मिले मूल को अज्ञात चर के स्थान पर लिखकर समीकरण के बाएँ पक्ष और दाएँ पक्ष की समानता का परीक्षण करना चाहिए।

उदाहरण-7 में मूल बीज है $\mathrm{z}=6$
समीकरण का बायाँ पक्ष $=\mathrm{z}(\mathrm{z}+6)=6(6+6)=6 \times 12=72$
दायाँ पक्ष $=\mathrm{z}(\mathrm{x}+7)-6=6(6+7)-6=6 \times 13-6=78-6=72$
अर्थात $\mathrm{z}-6$ हो तो बायाँ पक्ष $=$ दायाँ पक्ष होगा ।

उदाहरण-8: हल करो: $\mathrm{x}(\mathrm{x}+9)=(\mathrm{x}+3)(\mathrm{x}+7)-10$
हल:

$$
\begin{aligned}
& \mathrm{x}(\mathrm{x}+9)=(-\mathrm{x}+3)(\mathrm{x}+7)-10 \Rightarrow \mathrm{x}^{2}+9 \mathrm{x}=\mathrm{x}^{2}+3 \mathrm{x}+7 \mathrm{x}+21-10 \\
& \Rightarrow \mathrm{x}^{2}+9 \mathrm{x}=\mathrm{x}^{2}+10 \mathrm{x}+11 \Rightarrow 1 \mathrm{x}^{2}-\mathrm{x}^{2}+9 \mathrm{x}-10 \mathrm{x}=11 \text { (पक्षांतरण करने से) } \\
& =1-\mathrm{x}=11 \Rightarrow \mathrm{x}=-11 \text { (दोनों पक्षों को }-1 \text { से गुणा करने से) }
\end{aligned}
$$

अभ्यास-7(a)

(कोष्ठक में दिन गए मानों में से दिए गए समीकरण से अज्ञात चर का सही मान चुनकर लिखों ।

1. (i) $x-2=7$
$(2,7,9,11)$
(ii) $\mathrm{y}+3=10$
(3, 7, 11, 13)
(iii) $2 x=8$
$(4,6,8,10)$
(iv) $\frac{x}{3}=7$
$(10,14,18,21)$
(v) $8-x=3$
$(3,5,8,11)$
(vi) $7-x=2$
$(5,6,7,8)$
(vii) $x \times \frac{1}{5}=10 \quad(40,50,60,70)$
(viii) $1.6=\frac{y}{1.5}$
$(1.5,1.6,2.1,2.4)$
(ix) $-8=x=3 \quad(-11,-5,0,11)$
(x) $\frac{2}{3} x=1.4$
2. निम्न समीकरणों को हल करो :
(i) $3 \mathrm{x}+7=\mathrm{x}+15$
(ii) $2 x-5=x+11$
(iii) $2 x-6=5 x+9$
(iv) $4 x-8=3 x+9$
(v) $5 x-6=4 x+3$
(vi) $\frac{3}{7}+2 z=\frac{17}{7}$
(vii) $\frac{5 x}{3}+\frac{2}{5}=1$
(viii) $\frac{x}{2}+\frac{x}{3}+\frac{x}{4}=13$
(ix) $\frac{2 x}{3}-\frac{3 x}{8}=\frac{7}{12}$
(x) $\frac{7}{x}+\frac{3}{5}=\frac{-1}{10}$
3. हल करो : (वज्रगुणन का प्रयोग करके)
(i) $\frac{x+2}{x-2}=\frac{3}{2}$
(ii) $\frac{7 y+2}{5}=\frac{6 y-5}{11}$
(iii) $\frac{x+7}{2 x-5}=\frac{1}{3}$
(iv) $\frac{5 x+6}{3 x-5}=\frac{4}{3}$ (v) $\frac{x+\frac{1}{2}}{2 x-\frac{1}{2}}=\frac{1}{3}$
4. हल करो । उसके बाद अज्ञात चर के स्थान पर मूल का प्रयोग करके दोनों पक्षों को सत्यापन करो :
(i) $2(x+3)+7(x-7)=3(x+16)+12$
(ii) $(x+1)(x+2)+6=(x-3)(x-4)$
(iii) $x(x+11)=(x+5)(x+7)-9$
(iv) $2(x+3)+15=3(2 x-4)+24$
(v) $24 x-8(2 x+8)=6 x-(2-x)-72$

7.6 एक घात समीकरण का प्रयोग (Application of linear equation) :

अंक गणित के प्रश्नों में आवश्यक उत्तर पाने के लिए एक अज्ञात चर को लेकर एक समीकरण बनाया जाता है। इस समीकरण का समाधान करने के बाद आवश्यक उत्तर ज्ञात होता है। इस विधि को बीज गणितीय विधि में हल करते हैं। नीचे कुछ समाधान दिए गए हैं। ध्यान से देखो:

पहला चरणः अंकगणित के प्रश्न में पहले अज्ञात चर पहचानो ।
दूसरा चरणः प्रश्न की शर्तो को लेकर एक अज्ञात बीजीय व्यंजक बनाओ ।
तीसरा चरणः प्राप्त समीकरण को हल करो ।
उदाहरण-9: किस संख्या में 7 जोड़ने से योगफल 103 होगा।
हल: मान लो संख्या x है।
प्रश्न के अनुसार $x+7=103 \Rightarrow x+7-7=103-7$ है ।
$\Rightarrow \mathrm{x}=96$ (उत्तर) $\therefore 96$ है।
उदाहरण-10 : दो संख्याओं का योगफल 74 है। एक संख्या दूसरी से 10 अधिक है। दोनों संख्याएँ ज्ञात करो ।

हल: मान लो छोटी संख्या x है। दूसरी संख्या $x+10$ होगी ।
प्रश्न के अनुसार $\mathrm{x}+(\mathrm{x}+10)=74 \Rightarrow 2 \mathrm{x}+10=74$
$\Rightarrow 2 x=74-10 \Rightarrow 2 x=64 \Rightarrow x=32$ (छोटी संख्या)
बड़ी संख्या $=32+10=42$ (उत्तर)
उदाहरण-11: एक संख्या का दो गुना, संख्या के आधे से 45 अधिक है । संख्या ज्ञात करो:
हल: मान लो संख्या x है। इसका दो गुना 2 x है। संख्या का आधा $\frac{x}{2}$ है।
प्रश्न के अनुसार $2 x-\frac{x}{2}=45 \Rightarrow \frac{4 x-x}{2}=45 \Rightarrow \frac{3 x}{2}=45$
$\Rightarrow x=45 \times \frac{2}{3} \Rightarrow x=30$ (उत्तर)
उदाहरण-12 : एक दो अंकीय संख्या के अंक दोनों का योगफल 8 है । संख्या में 18 जोड़ने से संख्या के अंक दोनों के स्थान बदल जाते हैं। संख्या ज्ञात करो :
हल: मान लो संख्या के इकाई के स्थान का अंक है $=\mathrm{x}$ तब दाहाई के स्थान का अंक होगा $=8-\mathrm{x}$
\therefore संख्या $=10(8-\mathrm{x})+\mathrm{x}$ है ।
अंको के स्थान बदलने से संख्या है $10 x+(8-x)$
प्रश्न के अनुसार $=[10(8-x)+x]+18=10 x+8-x$

$$
\begin{aligned}
& \Rightarrow 80-10 x+x+18=10 x+8-x \\
& \Rightarrow 98-9 x=9 x+8 \\
& \Rightarrow 98-8=9 x+9 x \Rightarrow 90=18 x \Rightarrow 18 x=90 \Rightarrow x=\frac{90}{18}=5
\end{aligned}
$$

इकाई के स्थान पर अंक $=5$ है
दहाई के स्थान पर अंक है $8-5=3$
संख्या है $=10 \times 3+5=35$ (उत्तर)
उदाहरण-13: एक परिमेय संख्या का हर, अंश से 8 अधिक है। अंश और हर प्रत्येक में 9 योग करने से संख्या $\frac{11}{15}$ के बराबर होती है। संख्या ज्ञात करो ।

हल: परिमेय संख्या का अंश x लें । प्रश्न के अनुसार हर $=\mathrm{x}+8$ है।
\therefore परिमेय संख्या होगी $=\frac{x}{x+8}$
फिर प्रश्न के अनुसार $\frac{x+9}{(x+8)+9}=\frac{11}{15}$
$\Rightarrow(\mathrm{x}+9) 15=(\mathrm{x}+17) 11 \Rightarrow 15 \mathrm{x}+135=11 \mathrm{x}+187$
$\Rightarrow 15 \mathrm{x}-11 \mathrm{x}=187-135 \Rightarrow 4 \mathrm{x}=52 \rightarrow \mathrm{x}=13$
\therefore परिमेय संख्या $=\frac{x}{x+8}=\frac{13}{13+8}=\frac{13}{21}$ (उत्तर)
उदाहरण-14: अर्जुन की उम्र श्रीया की उम्र से दुगुनी है। पाँच साल पहले उसकी उम्र श्रीया की उम्र की तिगुनी थी अब दोनों की उम्र तय करो:
हलः मान लो अब श्रीया की उम्र x है।
अर्जुन की उम्र $2 x$ है। पाँच साल पहले श्रीया की उम्र थी $=(x-5)$
प्रश्न के अनुसार $2 \mathrm{x}-5=3(\mathrm{x}-5)$
$\Rightarrow 2 \mathrm{x}-5=3 \mathrm{x}-15 \Rightarrow 15-5=3 \mathrm{x}-2 \mathrm{x} \Rightarrow 10=\mathrm{x}$
$\Rightarrow \mathrm{x}=10$ वर्ष (उत्तर) श्रीया की उम्र
अर्जुन की उम्र $=(2 \times 10)=20$ वर्ष (उत्तर)

अभ्यास-7(b)

1. किसी संख्या का $\frac{4}{5}$, उस संख्या के $\frac{3}{4}$ से 4 अधिक है । संख्या ज्ञात करो ।
2. किस संख्या का $\frac{1}{3}$, इसके $\frac{1}{4}$ से 6 अधिक है।
3. किस संख्या का $\frac{1}{2}, 12$ से जितना कम है, इसका $\frac{5}{2}, 12$ से उत्तना अधिक है ?
4. क्रम से आने वाली तीन विषम संख्याओं का योगफल 33 है। बीच की संख्या ज्ञात करो ।
5. क्रम से आनेवाली किन दो संख्याओं का योगफल 31 होगा ?
6. क्रम से आने वाली तीन युग्म (सम) संख्याओं का योगफल 36 है । वृहत्तम संख्या ज्ञात करो ।
7. हमीद के रुपए का 15%, रसीद के रुपए के 20%, से बराबर है। दोनों के पास कुल 350 रुपए हैं। किसके पास कितने रुपए हैं ।
8. दो अंकीय संख्या के दोनों अंकों का योगफल 9 है । अंकों के स्थान बदल जाने से नई संख्या पहले की मूल संख्या से 27 अधिक होती है। संख्या ज्ञात करो ।
9. दो अंकीय संख्या के दोनों अंकों का योगफल 10 है । संख्या में 36 जोड़ने से संख्या के दोनों अंकों के स्थान बदल जाते हैं। संख्या ज्ञात करो ।
10. किस संख्या का 20% इसके 12% से 12 अधिक है।
11. दो धनात्मक पूर्णांकों का अंतर (व्ययकलन) 30 है। उनका अनुपात $2: 5$ है । दोनों संख्याओं को ज्ञात करो ।
12. एक कक्षा कुल 49 विद्यार्थी हैं। बच्चों की संख्या बच्चियों की संख्या का $\frac{3}{4}$ है। कक्षा में बच्चों और बच्चियों की संख्या ज्ञात करो ।
13. दो पूरक कोणों का अंतर 10° है। दोनों कोणों का मान ज्ञात करो।
14. एक थैले में 500 रुपए के 5 रुपए और 10 रुपए के सिक्के हैं । कुल सिक्के 75 हैं, तो प्रत्येक सिक्कों की संख्या ज्ञात करो।
15. एक आयत की लंबाई, चौडाई की दुगुनी है । इसका परिमाप 150 मीटर है । इसकी लंबाई और चौड़ाई ज्ञात करो ।
16. एक परिमेय संख्या के अंश और हर का अनुपात $3: 4$ है । हर के साथ 3 जोड़ने से अंश और हर का अनुपात $3: 5$ हो जाता है। परिमेय संख्या ज्ञात करो ।
17. एक त्रिभुज के तीनों कोणों की माप से $10-10$ अंश घटा देने से शेष कोणों की माप का अनुपात 6:4:5 होता है। वृहत्तम कोण की माप ज्ञात करो ।
18. शरत अपने घर से 4 कि.मी. प्रति घंटे की रफ्तार से स्कूल जाकर घंटी बजने के 12 मिनट के बाद पहुँचा । दूसरे दिन वह 5 कि.मी. प्रति घंटे की रफ्तार से जाकर सही समय पर पहुँच गया। दोनों दिन वह एक ही निश्चित समय पर घर से निकला था। उसके घर से स्कूल की दूरी कितनी है ।

7.7 द्विधात समीकरण और उसका हल : (Quadric equation and its solution) :
 एक अज्ञात चरवाले समीकरण में अज्ञात चर का सर्वोच्च घात 2 हो तो उसे द्विघात समीकरण कहते हैं ।

इसका सामान्य रूप है $a x^{2}+b x+c=0, a \neq 0$ है।
यहाँ द्विघात समीकरण का बायाँ पक्ष एक द्विघात पलिनोमियल (बीजीय व्यंजक) हैं। जिसका गुणनखंड निकालना संभव है। गुणनखंडों द्वारा दिए गए समीकरण का हल निकाला जाता है ।

पिछली अध्याय में तुम्हें द्विघात बीजीय व्यंजका का गुणनखंड निकालना ज्ञात हुआ है। जो सर्वसमिकाएँ जानते हो, उन्हें याद करो ।

वे सर्वसमिकाएँ हैं :
(i) $a^{2}-b^{2}=(a+b)(a-b)$
(ii) $\mathrm{x}^{2}+(\mathrm{a}+\mathrm{b}) \mathrm{x}+\mathrm{ab}=(\mathrm{x}+\mathrm{a})(\mathrm{x}+\mathrm{b})$
(iii) $(a \pm b)^{2}=a^{2} \pm 2 a b+b^{2}$

इन सर्वसमिकाओं का प्रयोग करके द्विघात बीजीय व्यंजकों का गुणन खंड ज्ञात किया जा सकता है। प्रत्येक द्विघात बीजीय व्यजक के दो एकघात गुणनखंड होते हैं।

याद रखो : द्विघात समीकरण में सिर्फ दो बीज है ।

उदाहरण-15: हल करो: $\mathrm{x}^{2}-36=0$ है ।
हल : $\mathrm{x}^{2}-36=0 \Rightarrow(\mathrm{x})^{2}-(6)^{2}=0$,

$$
\begin{aligned}
& \Rightarrow(\mathrm{x}+6)(\mathrm{x}-6)=0 \\
& \mathrm{a}^{2}-\mathrm{b}^{2}=(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b}) \text { (सर्वसमिका का प्रयोग हुआ) } \\
& \Rightarrow(\mathrm{x}+6)=0 \text { या } \mathrm{x}-6=0 \\
& \Rightarrow \mathrm{x}=-6 \text { और } \mathrm{x}=6 \\
& \therefore \text { उत्तर } \mathrm{x}=-6 \text { और } 6 \text { है । }
\end{aligned}
$$

उदाहरण-16: $\mathrm{x}^{2}-5 \mathrm{x}+6=0$, समीकरण का हल करो ।
हल : $=\mathrm{x}^{2}-5 \mathrm{x}+6=0 \Rightarrow \mathrm{x}^{2}+\{(-3)+(-2)\} \mathrm{x}+(-3)(-2)=0$ (सर्वसमिका (ii)का प्रयोग हुआ)

$$
\Rightarrow(x-3)(x-2)=0
$$

$$
\Rightarrow x-3=0 \text { अथवा } x-2=0 \Rightarrow x=3 \text { अथवा } x=2
$$

$\therefore \mathrm{x}$ का मान 3 और 2 है।
उदाहरण-17: समाधान करो : $2 x^{2}-9 x+4=0$
हल : $2 \mathrm{x}^{2}-9 \mathrm{x}+4=0 \Rightarrow 2 \mathrm{x}^{2}-8 \mathrm{x}-\mathrm{x}+4=0$
(यहाँ मध्यम पद का संख्यात्मक गुणांक -9 दोनों संख्यओं का योगफल होगा और दोनों संख्याओं का गुणनफल 8 होगा ।)

$$
\begin{aligned}
\Rightarrow 2 \mathrm{x}(\mathrm{x}-4)-1(\mathrm{x}-4)=0 & \Rightarrow(\mathrm{x}-4)(2 \mathrm{x}-1)=0 \\
& \Rightarrow(\mathrm{x}-4)=0 \text { या }(2 \mathrm{x}-1)=0 \\
& \Rightarrow \mathrm{x}=4 \text { या } \mathrm{x}=\frac{1}{2} \quad \therefore \mathrm{x} \text { का मान } 4 \text { और } \frac{1}{2} \text { है । }
\end{aligned}
$$

उदाहरण-18: हल करो : $\mathrm{x}^{2}-2 \mathrm{x}+1=0$
हल : $\mathrm{x}^{2}-2 \mathrm{x}+1=0 \Rightarrow(\mathrm{x})^{2}-2 \cdot \mathrm{x} \cdot 1+(1)^{2}=0$
$\Rightarrow(\mathrm{x}-1)^{2}=0 \quad$ (सर्वसमिका) $(\mathrm{a}-\mathrm{b})^{2}=\mathrm{a}^{2}-2 \mathrm{ab}+\mathrm{b}^{2}$ (प्रयुक्त हुआ है)
$\Rightarrow(\mathrm{x}-1)(\mathrm{x}-1)=0 \Rightarrow(\mathrm{x}-1)=0$ है या $(\mathrm{x}-1)=0$
$\Rightarrow \mathrm{x}=1$ है । (अपेक्षित उत्तर) \therefore दोनों बीज बराबर हैं।)

उदाहरण-19: $x-\frac{18}{x}=3$ के मूल बीज द्वय ज्ञात करो ।
हल : $x-\frac{18}{x}=3 \Rightarrow \frac{x^{2}-18}{x}=3, \Rightarrow x^{2}-18=3 x$

$$
\begin{aligned}
& \Rightarrow x^{2}-3 x-18=0, \Rightarrow x^{2}-6 x+3 x-18=0 \\
& \Rightarrow=x(x-6)+3(x-6)=0, \Rightarrow(x-6)(x+3)=0 \\
& \Rightarrow \mathrm{x}-6=0, \text { या } \mathrm{x}+3=0 \\
& \Rightarrow \mathrm{x}=6 \text { अथवा } \mathrm{x}=-3 \text { है }
\end{aligned}
$$

\therefore मूल बीज द्वय 6 और -3 है ।
उदाहरण-20: हल करो: $\mathrm{x}^{2}-2 \mathrm{x}=323$
हल : $x^{2}-2 x=323 \Rightarrow x^{2}-2 \cdot x \cdot 1+(1)^{2}=(1)^{2}+323$

$$
\begin{aligned}
& \Rightarrow(\mathrm{x}-1)^{2}=324 \Rightarrow(\mathrm{x}-1)^{2}= \pm(18)^{2} \\
& \Rightarrow(\mathrm{x}-1)= \pm 18 \Rightarrow \mathrm{x}=1 \pm 18 \\
& \Rightarrow \mathrm{x}=1+18, \Rightarrow \mathrm{x}=\mathrm{x}-18, \Rightarrow \mathrm{x}=19 \text { अथवा }-17
\end{aligned}
$$

\therefore मूल बीज द्वय 19 और -17 है । (उपेक्षित उत्तर)

अभ्यास-7(c)

1. निम्नलिखित द्विघात समीकरण का हल करो ।
(i) $x^{2}-3 x=0$
(ii) $4 x^{2}-25=0$
(iii) $2 \mathrm{x}^{2}-8=0$
(iv) $9 x^{2}=16$
(v) $2 x^{2}+5 x=0$
(vi) $a x^{2}-b x=0$
(vii) $\frac{x^{2}}{3}=27$
(viii) $\frac{x^{2}}{9}=81$
2. निम्नलिखित द्विघात समीकरण का हल करो ।
(i) $x^{2}-2 x-3=0$
(ii) $x^{2}-4 x=5$
(iii) $x^{2}-x=20$
(iv) $2^{2}+7 x+12=0$
(v) $x^{2}+2 x-35=0$
(vi) $x^{2}-6 x+5=0$
(vii) $2 x^{2}-x-3=0$
(viii) $3 x^{2}+2 x-5=0$
3. (vii) के लिए सूचना ऐसी दो संख्याएँ ज्ञात करने की जरूरत है, जैसे दोनों संख्याओं का योगफल
(-1) और गुणनफल (-6) होगा ।
(ix) $x^{2}-(a+b) x+a b=0$
(x) $x^{2}+(a-b)-a b=0$ है
(सूचना : मूल द्वय का मान a और b के माध्यम से तय करो ।

व्यापारिक गणित (COMMERCIAL MATHEMATIC)

8.1 लाभ प्रतिशत / हानि प्रतिशत ज्ञात करना

हम जानते हैं कि एक व्यापार में व्यापारी का या तो लाभ होता है या उसे हानि उठानी पड़ती है । यदि किसी स्थिति में व्यापारी को अपना मूलधन नहीं मिलता, या अपनी खरीद का मूल्य नहीं मिलता तो उसका नुकसान होता है । खरीद के मूल्य से अधिक मिलने से हम कहते है कि लाभ हुआ । साधारणतया दुकानदार लाभ के लिए व्यापार करता है ।

व्यापार में लाभ या हानि को प्रतिशत में हिसाब करके व्यक्त किया जाता है ।

8.1.1 प्रतिशत का हिसाब:

क्रयमूल्य को 100 रुपए लेकर विक्रयमूल्य से हम लाभ या हानि का हिसाब करके व्यापार करने से उसे लाभ प्रतिशत, या हानि प्रतिशत कहते हैं । तुम भी पिछली कक्षा में लाभ या हानि के बारे में चढ़ चुके हो । प्रतिशत लाभ या हानि ज्ञात करने की विधि भी तुम जानते हो । उदाहरण-1 :

एक दुकानदार ने दो सामान प्रत्येक को 100 रुपए के हिसाब से खरीदे । एक को 130 रुपए में और दूसरे को 90 रुपए में बेचे । उसे किस सामान पर कितना प्रतिशत लाभ या हानि हुई ?

हल :
पहले सामान का क्रयमूल्य 100 रुपये है । विक्रय मूल्य 130 रुपए है ।
उसे लाभ हुआ = विक्रय मूल्य - क्रय मूल्य

$$
=130 \text { रुपए }-100 \text { रुपए }=30 \text { रुपए }
$$

क्रयमूल्य 100 रुपए है । अत: इस सामान में उसका लाभ हुआ $=30 \%$
(ii) दूसरे सामान का क्रयमूल्य $=100$ रुपए, विक्रयमूल्य $=90$ रुपए

हानि $=$ क्रयमूल्य - विक्रयमूल्य $=100-90=10$ रुपए चूँकि क्रयमूल्य 100 रुपए है, अतएव उसकी
हानि का प्रतिशत $=10 \%$ सकी (अपेक्षित उत्तर)
याद रखो :
(ii) लाभ = विक्रय मूल्य - क्रयमूल्य
(ii) लाभ $=\frac{\text { लाभ }}{\text { क्रयमूल्य }} \times 100$
(iii) हानि $=$ क्रयमूल्य - विक्रयमूल्य
(iv) $\%$ हानि $=\frac{\text { हानि }}{\text { क्रयमूल्य }} \times 100$

उदाहरण-2 : एक कमीज 360 रुपए में खरीदकर 10% लाभ में विक्री की गई । विक्रयमूल्य ज्ञात करो ।
हल: विक्रयमूल्य $=$ क्रयमूल्य + लाभ
मान लो क्रयमूल्य $=100$ रुपए, लाभ $=10$ रुपए
\therefore विक्रय मूल्य $=100$ रुपए +10 रु $=110$ रुपए
100 रुपए क्रयमूल्य है जबकि विक्रय मूल्य $=110$ रु.
1 रुपया क्रयूल्य है तो विक्रय मूल्य है $=\frac{110}{100}$ रु
360 रुपए क्रयमूल्य है तो विक्रय मूल्य $=\frac{110}{100} \times 360$ रुपए $=396$ रुपए
बि.द्र.: यहाँ ध्यान दो विक्रय मूल्य $=\left(\frac{110}{100} \times 360\right)$ रुपए \Rightarrow विक्रय मूल्य $=\frac{(100+10) \times 360}{100}$
विकल्प से लिखा जा सकता है: विक्रय मूल्य $=\frac{(100+\text { लाभ } \%) \times \text { क्रयमूल्य }}{100}$
अथवा विक्रय मूल्य $=\frac{(100+\text { लाभ } \%)}{100} \times$ क्रयूल्य $=\left(1+\frac{\text { लाभ } \%}{100}\right) \times$ क्रयमूल्य
अर्थात् लाभ प्रतिशत $\mathrm{r} \%$ हो तो विक्यरमूल्य $=\left(1+\frac{r}{100}\right) \times$ क्रयमूल्य
उसी प्रकार हानि प्रतिशत $\mathrm{r} \%$ हो तो विक्रय मूल्य $=\left(1-\frac{r}{100}\right) \times$ क्रयमूल्य
विकल्प में लिखा जा सकता है : $=\frac{(100-\text { हान } \%) \times \text { क्रयमूल्य }}{100}$

उदाहरण-3: एक पुस्तक बेचने वाला एक पुस्तक 72 रुपए में बेचकर 20% लाभ करता है । पुस्तक का क्रय मूल्य ज्ञात करो ।

हल : मान लो क्रयमूल्य $=100$ रुपए
$\therefore 100$ रुपए क्रयमूल्य के समय लाभ का प्रतिशत $=20$ रुपए
विक्रय मूल्य $=$ क्रयमूल्य + लाभ $=100$ रुपए +20 रुपए $=120$ रुपए
विक्रय मूल्य 120 रुपए है जबकि क्रय मूल्य $=100$ रुपए
विक्रय मूल्य 72 रुपए है तो क्रय मूल्य $=\frac{100}{120} \times 72$ रुपए $=60$ रुपए
सूचना- ध्यान दो: क्रयमूल्य $=\frac{100 \times 72}{(100+20)} \Rightarrow$ क्यमूल्य $=\frac{\mathbf{1 0 0} \times \text { विक्रय मूल्य }}{(\mathbf{1 0 0}+\text { लाभ })}$
उदाहरण-4: एक आदमी ने एक सामान 75 रुपए में बेचा । उसमें उसे क्रय मूल्य का $\frac{1}{4}$ लाभ मिला । सामान का क्रयमूल्य ज्ञात करो।

हल : मान लो सामान का क्रय मूल्य $=\mathrm{x}$ रुपए, लाभ $=\frac{x}{4}$ रुपए
विक्रय मूल्य $=\mathrm{x}$ रुपए $+\frac{x}{4}$ रुपए $=\frac{5 x}{4}$ रुपए
प्रश्न के अनुसार $\frac{5 x}{4}=75 \Rightarrow \mathrm{x}=\frac{75 \times 4}{5} \Rightarrow \mathrm{x}=₹ 60$
\therefore सामान का क्रय मूल्य ₹ 60 है ।
उदाहरण-5: एक दुकानदार को एक बक्से को ₹ 510 में बेचकर 15% हानि उठानी पड़ी । यदि वह बक्स को ₹570 में बेचता तो उसका प्रतिशत लाभ या प्रतिशत हानि ज्ञात करो।

हल : प्रथम विक्री : विक्रय मूल्य $=$ ₹ 510 हानि 15% है
100 क्रय के समय $(100-15)=85$ विक्री
\therefore ₹ 85 विक्रय मूल्य है जबकि क्रयमूल्य 100 है ।
₹ 510 विक्रय मूल्य है तो क्रयमूल्य $=\frac{100 \times 510}{85}=$ ₹ 600
\therefore बक्से का क्रयमूल्य ₹ 600
सूचना: क्रयमूल्य $=\frac{100 \times \text { विक्रय मूल्य }}{(100-\text { हानि } \%)}$

पुन: विक्रयमूल्य $=₹ 570$ क्रयमूल्य $=₹ 600$
\therefore विक्रय मूल्य $<$ क्रय मूल्य \therefore हानि $=600-570=₹ 30$
$\%$ हानि $=\frac{\text { हानि }}{\text { क्रयमूल्य }} \times 100=\frac{30 \times 100}{600}=5 \%$ (अपेक्षित उत्तर)
उदाहरण-6: 20 कलमों का विक्रय मूल्य 25 कलमों के क्रय मूल्य के बराबर है। प्रतिशत लाभ ज्ञात करो ।

हल : 20 कलमों का विक्रय मूल्य = ₹ 100
$\therefore 25$ कलमों का क्रय मूल्य $=$ ₹ 100
एक कलम का विक्रय मूल्य $=\frac{100}{20}=5$ रुपए
25 कलमों का विक्रय मूल्य $=5 \times 25=₹ 125$
\therefore लाभ $=$ विक्रय मूल्य - क्रयमूल्य $=(125-100)=$ ₹ 25
$\%$ लाभ $=\frac{\text { ल्राभ }}{\text { क्रमूल्य }} \times 100=\left(\frac{25}{100} \times 100\right) \%=25 \%$ (अपेक्षित उत्तर)
उदाहरण-7: दुकानदार बराबर मूल्य पर दो सामान बेचकर एक में 20% लाभ और दूसरे में 20% हानि करता है । तब उसका कुल प्रतिशत लाभ या हानि ज्ञात करो ।

हल : माना कि प्रत्येक सामान का विक्रय मूल्य $=₹ 100$
प्रथम सामान में लाभ $=20 \%$
क्रय मूल्य $=\frac{\mathbf{1 0 0} \times \text { विक्रय मूल्य }}{(100+\text { लाभ } \%)}=\frac{100 \times 100}{100+20}=\frac{100 \times 100}{120}=\frac{250}{3}$ रुपए
दूसरे सामान की विक्री में हानि $=20 \%$
क्रयमूल्य $=\frac{\mathbf{1 0 0} \times \text { विक्रय मूल्य }}{(\mathbf{1 0 0}+\text { हानि } \%)}=\frac{100 \times 100}{(100-20)}=\frac{100 \times 100}{80}=125$ रुपए
\therefore दोनों सामानों का क्रयमूल्य $\left(\frac{250}{3}+125\right)=\frac{250+375}{3}=\frac{625}{3}$ रुपए
दोनों सामानों का विक्रय मूल्य $=$ ₹ 200
हानि $=$ क्रयमूल्य - विक्रय मूल्य $=\left(\frac{625}{3}-200\right)$ रुपए $=\frac{25}{3}$ रुपए
\therefore हानि का प्रतिशत $=\frac{\text { हानि }}{\text { क्रयमूल्य }} \times 100=\frac{\frac{25}{3}}{\frac{625}{3}} \times 100=4 \%$
\therefore व्यापार में हानि प्रतिशत $=4 \%$
उदाहरण-8: एक फल बेचनेवाले ने 20 कि.ग्रा. फल ₹ 300 में खरीदा । उसमें से 2 कि.ग्रा. सड़ गया । शेष फल को प्रति कि.ग्रा. किस दर से बेचने से उनका 30% लाभ होगा ?

हल : शेष फल का परिमाण $=20-2=18$ किग्रा, लाभ होगा $=30 \%$
लाभ $=$ क्रयमूल्य का $30 \%=\left(300 \times \frac{30}{100}\right)=₹ 90$
विक्रय मूल्य $=$ क्रयमूल्य का + लाभ $=300+90=$ ₹ 390
18 कि.ग्रा. सेव का विक्रय मूल्य $=₹ 390$
$\therefore 1$ कि.ग्रा. सेव का विक्रय मूल्य $=\frac{390}{18}$ रुपए $=21 \frac{2}{3}$ (अपेक्षित उत्तर)
उदाहरण-9: एक दुकानदार ने 5 नींबू को 2 रुपए की दर से 100 नींबू खरीदकर और नींबू को 3 रुपए की दर से 80 नींबू खरीदकर प्रत्येक नींबू को 50 पैसे की दर से बेच दिया । उसका प्रतिशत लाभ ज्ञात करो ।

हल : 5 नींबू का क्रय मूल्य ₹ 2 है ।
$\therefore 100$ नींबू का क्रय मूल्य $=\frac{2 \times 100}{5}=40$ रुपए
8 नींबू का क्रय मूल्य $=$ ₹ 3
$\therefore 80$ नींबू का क्रय मूल्य $=\frac{3 \times 80}{8}=30$ रुपए
दो प्रकार के $100+80=180$ नींबू का क्रय मूल्य $=40+30=$ ₹ 70
प्रत्येक के 50 पैसे की दर से 180 नींबू बेचने का मूल्य $=180 \times \frac{1}{2}=90$ रुपए
\therefore लाभ $=$ विक्रय मूल्य - क्रय मूल्य $=90-70=$ ₹ 20
\therefore लाभ प्रतिशत $=\frac{\text { लाभ }}{\text { क्रयमूल्य }} \times 100=\frac{20}{70} \times 100=28 \frac{4}{7} \%$ (अपेक्षित उत्तर)

8.2 बट्टा/छूट (discount) ज्ञात करना:

हम पोशाक की दुकान जाते हैं तो देखते हैं कि पोशाक पर एक मूल्य लिखा रहता है । इसे पोशाक का अंकित मूल्य (marked price) कहते हैं । समय-समय पर व्यापार ग्राहकों को आकर्षित करने के लिए अंकित मूल्य से कुछ घटाकर बेचते हैं । इसे बट्टा या छूट कहते हैं । (कोई भी सामान हो सकता है)

याद रखो: अंकित मूल्य पर छूट को प्रतिशत में बताया जाता है । एक किताब का मूल्य ₹ 100 है छूट 20% है । तो किताब हय ₹ 80 में खरीदते हैं।

याद रखो: छूट/बट्टा = अंकित मूल्य - विक्रय मूल्य है)
उदाहरण-1 : एक घड़ी का अंकित मूल्य ₹ 840 है उसे ₹ 714 में बेच गया। बट्टा प्रतिशत ज्ञात करो ।

हल $:$ बट्टा $=$ अंकित मूल्य - विक्रय मूल्य $=840-714=$ ₹ 126
अंकित मूल्य 100 है तो बट्ट्ट $=\left(\frac{126}{840} \times 100\right) \%=15 \%$
याद रखो: बट्ट्ट/छूट $\%=\frac{\text { बट्टा }}{\text { अंकित मूल्य }} \times 100$

8.2.1 क्रमिक छूट (Successive Discount)

गांधी जयंती के अवसर पर खादी वस्त्र पर केन्द्र सरकार और राज्य सरकार दोनों छूट देते हैं । माना के केन्द्र सरकार की छूट $\mathrm{x} \%$ है । उसे अंकित मूल्य से छोड़ देने के बाद राज्य सरकार ने $\mathrm{y} \%$ झूट दी । ऐसी झूट को क्रमिक झूट कहते है ।

हम जानते हैं कि छूट अंकित मूल्य पर दी जाती हैं ।
माना कि सामान का अंकित मूल्य है z रुपए
(i) केन्द्र सरकार की छूट के बाद शेष विक्रय मूल्य $=\mathrm{x} \%=\mathrm{z} \times \frac{x}{100}=\frac{z x}{100}$ रुपए केन्द्र सरकार की छूट के बाद शेष विक्रय मूल्य $=z-\frac{z x}{100}=z\left(1-\frac{x}{100}\right)$ रुपए फिर राज्य सरकार की छूट $=\mathrm{y} \%=\mathrm{z}\left(1-\frac{x}{100}\right) \times \frac{y}{100}$

$$
=\frac{y z}{100}\left(1-\frac{x}{100}\right) \text { रुपए }
$$

केन्द्र सरकार और राज्य सरकार दोनों की छूट के बाद विक्रय मूल्य
$=z\left(1-\frac{x}{100}\right)-\frac{y z}{100}\left(1-\frac{x}{100}\right)$
$=z\left(1-\frac{x}{100}\right)\left(1-\frac{y}{100}\right)=\left(\frac{100-x}{100}\right)\left(\frac{100-y}{100}\right)$
अर्थात् छूट विक्रय मूल्य= अंकित मूल्य $\times\left(\frac{100-\text { प्रथम छूट } \%}{100}\right)\left(\frac{100-\text { द्वितीय छूट } \%}{100}\right)$

उदाहरण-2: दशरे के अवसर पर वयनिका वस्त्र भंडार ने पहले 20% और फिर बाद में 10% विशेष छूट दी । एक पाट वस्त्र का अंकित मूल्य ₹ 3000 है। उसका विक्रय मूल् ज्ञात करो ।

हलः प्रथम विधि
अंकित मूल्य $=$ ₹ 3000
प्रथम छूट $=20 \%$ द्वितीय छूट $=10 \%$
विक्रय मूल्य $=$ अंकित मूल्य $\times\left(\frac{100-\text { प्रथम छूट } \%}{100}\right) \times\left(\frac{100-\text { द्वितोय छूट } \%}{100}\right)$

$$
\begin{aligned}
& =\frac{3000(100-20)(100-10)}{100 \times 100}=\frac{3000 \times 80 \times 90}{100 \times 100} \text { रुपए } \\
& =2160 \text { रुपए }
\end{aligned}
$$

\therefore पाट वस्त्र का विक्रय मूल्य ₹ 2160 है।
विकल्प विधि: ₹ 3000 में 20% छूट $=\frac{3000 \times 20}{100}=600$ रुपए
शेष विक्रय मूल्य $=(3000-600)=$ ₹ 2400
फिर विशेष छूट 10% है। \therefore छूट $=2400 \times 10 \%=$ ₹ 240
\therefore पाट वस्त्र का विक्रय मूल्य $=2400-240=₹ 2160$

अभ्यास- 8(a)

1. एक दुकानदार को एक चद्दर ₹ 600 में बेचने से 28% लाभ मिला। चद्दर का क्रयमूल्य ज्ञात करो ।
2. एक आदमी ने 42 नींबू बेचकर 8 नींबू का विक्रयमूल्य हानि करता है । हानि प्रतिशत ज्ञात करो ।
3. एक दुकानदार 5 नींबू के क्रयमूल्य से 4 नींबू बेचता है । प्रतिशत लाभ या प्रतिशत हानि ज्ञात करो ।
4. 4 रुपए में 5 संतरे खरीदकर 5 रुपए में 4 संतरे बेचने से कितना प्रतिशत लाभ या प्रतिशत हानि होगी ?
5. 20 आम 30 रुपए में खरीदकर एक दर्जन को 24 रुपए की दर से बेचा गया। प्रतिशत लाभ ज्ञात करो ।
6. एक सब्जीवाले ने क्विंटल ₹ 500 की दर से और ₹ 400 की दर से दो प्रकार के खीरे खरीदकर दोनों को समान परिमाण में मिलाकर बेचा। 25% लाभ होने के लिए वह कि.ग्र. कितनी दर से बेचेगा ?
7. एक व्यापारी ने 1000 अंडे खरीदे । 90 अंडे सड़ गए। शेष अंडों को दर्जन ₹ 9.60 की दर से बेचा। उसे 12% हानि हुई । व्यापारी के अंडों का क्रय मूल्य ज्ञात करो ।
8. एक व्यापारी ने बराबर मूल्य पर दो साडियाँ बेंचीं । एक में 25% लाभ हुआ और दूसरे में 25% हानि हुई । उसका प्रतिशत लाभ या प्रतिशत हानि ज्ञात करो ।
9. एक व्यापारी ने दो रेडियो ₹ 1000 देकर खरीदे । एक को 20% लाभ पर दूसरे को 20% हानिपर बेचा । दोनों रेडियों का विक्रयमूल्य बराबर है । प्रत्येक का क्रय मूल्य ज्ञात करो ।
10. एक दुकानदार ने एक कमीज 20% लाभ पर बेचा । यदि वे कमीज 10% कम मूल्य में खरीदते और ₹ 75 अधिक में बेचते तो उनको 50% लाभ मिलता । कमीज का क्रय मूल्य ज्ञात करो ।
11. पूजा के अवसर पर राज्य सरकार 20% और केन्द्र सरकार 5% छूट देकर समिति के कपड़े बेचती है । एक धोती पर अंकित मूल्य ₹ 540 है । उसका विक्रय-मूल्य ज्ञात करो ।
12. पूजा के अवसर पर पहले 20% और परवर्ती मूल्य पर 10% छूट दी जाती है । मैंने ₹ 360 में एक साड़ी खरीदी । इस साड़ी का अंकित मूल्य ज्ञात करो ।
13. बराबर मूल्य की दो धोतियों को दुकानदार क्रमशः (i) 20% और 10% (ii) 15% और 15% छूट देते हैं । किस स्थिति में धोती खरीदना फायदेमंद रहेगा ?
14. दुकानदार घड़ी के अंकित मूल्य पर 10% छूट देता है । घड़ी का क्रयमूल्य ₹ 300 है । 20% लाभ पाने के लिए घड़ी पर अंकित मूल्य कितना लिखा जाएगा ।
15. एक मेज पर अंकित मूल्य ₹ 800 है । एक व्यापारी ने उसे 10% छुट पर खरीदा । उसका परिवहन खर्च ₹ 10 हुआ । कितने में मेज वेयमे से 12% लाभ मिलेगा ?
16. एक आदमी 40% लाभ पर सामान बेच रहा था । यदि वह 10% कम मूल्य पर खरीदता और वर्तमान के मूल्य से 10% अधिक छूट देता, तो उसका कितना प्रतिशत लाभ होता ?
17. एक सामान का क्रयमूल्य ₹ 500 है । दुकानदार को अंकित मूल्य पर 25% छूट देकर बेचने पर भी 10% लाभ मिलता है । अंकित मूल्य ज्ञात करो ।

8.3 साधारण ब्याज (Simple Interest) :

डाकघर या बैंक में रुपए जमा करने से निश्चित अवधि के बाद हमें जमा की गई राशि से अधिक रुपए मिलते हैं । उसी प्रकार जरूरत पड़ने पर हम बैंक या अपने क्षेत्र के साहूकार से ऋण लेते हैं । फिर चुकाते समय ऋण के रुपयों के साथ और कुछ अतिरिक्त अधिक रुपए देकर ऋण से मुक्त हो जाते हैं। जमा रखने से अधिक रुपए मिलते हैं। ऋण करने से अधिक रुपए देने पड़ते हैं । इस अधिक दी जाने वाली राशि को ब्याज (Interest) कहते हैं ।

ऋण ली गई राशि (निश्चित अवधि के लिए जमा की गई राशि) को मूलधन Principal कहते हैं। मूलधन और ब्याज के योगफल मिश्र घन (Amount) कहा जाता है ।

मिश्र घन $=$ मूलघन + ब्याज
हर ₹ 100 के लिए वार्षिक जितना ब्याज दिया जाता है, उसे ब्याज की दर (rate of interest) कहते हैं । निश्चित दर पर केवल मूलघन पर ब्याज का हिसाब किए जाने से उसे साधारण ब्याज (simple interest) कहते हैं ।

पिछली कक्षा में ऐकिक विधि से ब्याज का हिसाब करना तुम जानते हो। अब सूत्र का प्रयोग करके हिसाब करना सीखोगे ।

माना कि मूलघन= P रुपए ब्याज की दर=R $\%$, समय= C वर्ष, ₹ 100 में 1 वर्ष का ब्याज $=\mathrm{r}$ रुपए है।
₹ 100 में 1 वर्ष का ब्याज $=R$ रुपए
₹ 1 में 1 वर्ष का ब्याज $=\frac{R}{100}$ रुपए
P रुपए में T वर्ष का ब्याज $=\frac{P R}{100}$ रुपए
P रुपए का T वर्ष का ब्याज $=\frac{P T R}{100}$ रुपए
साधारण ब्याज (I) $=\frac{P T R}{100}$
.......(1) सूत्र
ब्याज का परिमाण सदैव मूलधन, समय और दर पर निर्भर रहता है ।

8.3.1 साधारण ब्याज ज्ञात करना:

उदाहरण-1: 4.5% वार्षिक दर से ₹ 1200 का 5 वर्ष का साधारण ब्याज ज्ञात करो। हल : यहाँ मूलधन $=\mathrm{P}=$ ₹ 1200 का 5 वर्ष का साधारण ब्याज ज्ञात करना है।
ब्याज की दर $=\mathrm{R} \%=4.5 \%$
साधारण ब्याज (I) $=\frac{P T R}{100}=\frac{1200 \times 4.5 \times 5}{100}=12 \times 45 \times 5=270$ रुपए
\therefore ₹ 1200 का 4.5% वार्षिक दर से 5 वर्ष का ब्याज ₹ 270 होंगे।
उदाहरण-2: 6% वार्षिक दर से ₹ 2500 का 2 वर्ष 6 महीने का साधारण ब्याज ज्ञात करो ।
हल : मूलधन $(\mathrm{P})=₹ 2500$ दर $=\mathrm{R} \%=6 \%$
समय $\mathrm{T}=2 \frac{6}{12}$ वर्ष $2 \frac{1}{2}$ वर्ष $\frac{5}{2}$ वर्ष
साधारण ब्याज (I)=(i) $=\frac{P T R}{100}=\frac{2500 \times 6 \times 5}{2 \times 100}$ रुपए $25 \times 3 \times 5=₹ 375$
मिश्र धन $=$ मूलधन + साधारण ब्याज $\Rightarrow(2500+375)=$ ₹ 2875 (अपेक्षित उत्तर)

याद रखो : A (Amount) मिश्रधन $=\mathrm{P}$ (मूलधन +I (ब्याज)

$$
\begin{equation*}
A=P+\frac{P T R}{100}=P\left(1+\frac{T R}{100}\right)=(A)=P\left(1+\frac{T R}{100}\right) \tag{ii}
\end{equation*}
$$

सूचना : ब्याज की दर में समय की सूचना न रहने पर इसे वार्षिक ब्याज की दर माना जाता है ब्याज की दर 5% का अर्थ है :- 5% वार्षिक दर

उदाहरण-3: 10% वार्षिक दर पर ₹ 4500 का 73 दिन का ब्याज और मिश्रधन ज्ञात करो ।
हल : मूलधन $(\mathrm{P})=4500$ रुपए
दर $=\mathrm{R} \%=10 \%$, समय $(\mathrm{T})=73$ दिन $=\frac{73}{365}$ वर्ष $=\frac{1}{5}$ वर्ष
साधारण ब्याज $(\mathrm{I})=\frac{P T R}{100}=\frac{4500 \times 10 \times 1}{5 \times 100}$ रुपए $=9 \times 10=$ ₹ 90
मिश्रधन $=$ मूलधन + ब्याज $=4500+90$ रुपए $=$ ₹ 4590 (अपेक्षित उत्तर)
उदाहरण-4: 1 रुपए के लिए 2% मासिक दर से ₹ 500 का $1 \frac{1}{2}$ वर्ष का ब्याज करो ।
हल : 1 रुपए का मासिक ब्याज $=2$ पैसे
100 रुपए का मासिक ब्याज $=2$ रुपए
100 रुपए का वार्षिक ब्याज $=2 \times 12=24$ रुपए
यहाँ मूलधन $(\mathrm{P})=₹ 500$, हार $(\mathrm{R} \%)=24 \%$
समय $(T)=1 \frac{1}{2}$ वर्ष $\frac{3}{2}$ वर्ष
साधारण ब्याज (I) $=\frac{P T R}{100}=\frac{500 \times 24 \times \frac{3}{2}}{100}$ रुपए $=5 \times 12 \times 3=$ ₹ 180
\therefore ₹ 500 का $1 \frac{1}{2}$ वर्ष का ब्याज ₹ 180 होंगे ।
उदाहरण-5: 6% दर से किस मूलधन का 12 वर्ष का साधारण ब्याज ₹648 होंगे ?
हल : ब्याज की दर $(\mathrm{R} \%)=6 \%$ समय $(\mathrm{T})=12$ वर्ष
साधारण ब्याज $(\mathrm{I})=648$ रुपए, मूलधन $(\mathrm{P})==\frac{\mathrm{PR}}{100}$
$\therefore \mathrm{P}=\frac{100 \times 1}{R T}=\frac{100 \times 648}{6 \times 12}=900$ रुपए (अपेक्षित उत्तर)

उदाहरण-6: 12.5% ब्याज की दर से किसी मूलधन का मिश्रधन कितने वर्ष में दुगुना हो जाएगा ?

हल : माना कि मूलधन $(\mathrm{P})=100$ रुपए
मिश्रधन $=$ ₹ 200 , समय $=\mathrm{T}$ वर्ष, $\mathrm{k}=\mathrm{R} \%=12.5 \%$
ब्याज $(\mathrm{I})=$ मिश्रधन - मूलधन $=200-100=₹ 100$
$I=\frac{P T R}{100} \Rightarrow T=\frac{100 \times 1}{P R}=\frac{100 \times 100}{100 \times 12.5}=8$ वर्ष
$\therefore 12.5 \%$ ब्याज की दर से किसी मूलधन का मिश्र-धन 8 वर्ष में दुगुना हो जाएगा । (अपेक्षित उत्तर)
अभ्यास- 8(b)
1 (i) एक रुपए के लिए हर महीने में 3 पैसे ब्याज की दर से वार्षिक ब्याज की प्रतिशत दर क्या होगी ?
(ii) ब्याज की दर वार्षिक 8 रुपए हैं। रुपए का वार्षिक ब्याज कितना होगा ?
(iii) वार्षिक ब्याज मूलधन का $\frac{1}{8}$ भाग है । वार्षिक ब्याज की प्रतिशत दर ज्ञात करो ।
(iv) 1 रुपए का 1 वर्ष का ब्याज $\frac{1}{16}$ रुपए है । वार्षिक ब्याज की दर ज्ञात करो ।
2. सदानंद ने डाकघर मे वार्षिक 8% ब्याज की दर से ₹ 8000 जमा रखा। 6 वर्ष के बाद उन्हें डाकघर से कितने रुपए प्राप्त होंगे ।
3. वार्षिक 7.5% ब्याज की दर से 6 वर्ष में मिश्रधन कितना होगा ?
4. हरिहर ने 10% ब्याज की दर से बैंक से ₹ 10,000 ऋण करके 13% ब्याज की दर से दो लोगों को पुन: ऋण दे दिया । 5 वर्ष के बाद बैंक का ऋण चुकाने के बाद उसका लाभ ज्ञात करो ।
5. रसानंद बाबू ने बैंक से 10.5% ब्याज की दर से ₹ 12000 ऋण करके रुपए के लिए हर महीने में 2 पैसे ब्याज की दर से ऋण दिया । इससे वर्ष के अंत में उनकी आय कितनी होगी ।
6. रुपए के लिए हर महीने में 3 पैसे ब्याज की दर से P रुपए का T वर्ष में मिश्रधन कितना होगा ?
7. शरत ने बैंक से 12% ब्याज की दर से ₹ 3000 कर्ज लेकर बैंक में ₹ 6600 जमा करके उऋण हुआ । उसने कितने वर्ष के लिए ऋण लिया था ?
8. 6% ब्याज की दर से किस मूलधन का $7 \frac{1}{2}$ वर्ष का साधारण ब्याज ₹ 4500 होगा ?
9. किसी मूलधन का 20 वर्ष में ब्याज और मूलधन मिलकर मूलधन के तीन गुने हो जाते हैं । ब्याज की दर ज्ञात करो ।
10. किसी मूलधन का 2 वर्ष का साधारण ब्याज, मिश्रधन का $\frac{1}{9}$ भाग है। ब्याज की दर ज्ञात करो।
11. किसी मूलधन का किसी निश्चित ब्याज की दर से 10 वर्ष और 6 वर्ष का मिश्रधन क्रमश: ₹ 3000 , ₹ 2600 हो जाता है। मूलधन और ब्याज की दर ज्ञात करो ।
12. कोई मूलधन एक निश्चित ब्याज की दर से 15 वर्ष में 3 गुना हो जाता है। वही मूलधन कितने वर्ष में 4 गुना हो जाएगा ?
13. कोई मूलधन 8 वर्ष 4 महीने में दुगुना हो जाता है। यह कितने वर्ष में 3 गुना होगा ?
14. किसी मूलधन का साधारण ब्याज, मूलधन का $\frac{16}{25}$ है। यदि ब्याज की दर और समय का संख्यात्मक मान बराबर हो, तो ब्याज की दर ज्ञात करो ।
15. कोई मूलधन 8% ब्याज की दर से 2 वर्ष में ₹ 12,122 हो जाता है। उसी मूलधन का 9% ब्याज की दर से 2 वर्ष 8 महीने में मिश्रधन कितना होगा।
16. करीम ने बैंक में ₹ 9000 जमा किया। 2 वर्ष के बाद उसने ₹ 4000 निकाल लिए। 5 वर्ष के बाद उसे बैंक से ₹ 7640 मिले । ब्याज की दर ज्ञात करो ।

8.4 चक्रवृद्धि ब्याज (Compound Interest) :

तुम जानते हो कि बैंक समय समय पर स्थायी जमा पर विज्ञापन देते रहते हैं। एक वर्ष के लिए स्थायी जमा पर ब्याज की दर 7% होगी तो बचत बैंक पर ब्याज की दर 3.5% होगी।

सामान्यतया हमें स्थायी जमा पर मिलने वाला ब्याज साधारण ब्याज नहीं है। पहले के वर्ष का मूलधन और ब्याज मिलकर दूसरे वर्ष के लिए मूलधन बन जाते हैं। बचत बैंक की जमा पर हर 6 महीने में ब्याज का हिसाब किया जाता है और उसे मूलधन के साथ जोड़ दिया जाता है। परन्तु स्थायी जमा की राशि पर हर तीन महीने में ब्याज का हिसाब किया जाता है और उसी समय वह मूलधन से संयोजित हो जाता है। समय समय पर यह अवधि 4 महीने या 6 महीने की होती है।

एक निश्चित समय पर मूलधन के साथ ब्याज को संयोजन करके परवर्ती मूलधन में रुपांतरित कर दिया जाता है और फिर नए मूलधन पर ब्याज का हिसाब किया जाता है, तब उस व्यवस्था को चक्रवृद्धि ब्याज (Compound Interest) हिसाब कहते हैं ।

उदाहरण-1: मधुसूदन ने एक बैंक से रबी फसल की खेती के लिए 10% ब्याज की दर से 1500 कर्ज किया। यदि प्रत्येक वर्ष के अंत में ब्याज के हिसाव की व्यवस्था हो, विभिन्र वर्ष के अंत में उसको कितना भुगतान करना पड़ेगा ? यदि वह दो वर्ष के बाद ऋण का भुगतान करेगा। तो उसे कितनी राशि देनी पड़ेगी ?

हल : प्रथम वर्ष का मूलधन $\left(\mathrm{P}_{1}\right)=$ ₹ 1500 ब्याज की दर $=\mathrm{R} \%=10 \%$
प्रथम वर्ष का ब्याज $\left(\mathrm{I}_{1}\right)=\frac{P_{1} R T}{100}=\frac{1500 \times 10 \times 1}{100}=₹ 150$
द्वितीय वर्ष का मूलधन $=\mathrm{P}_{2}=\mathrm{P}_{1}+\mathrm{I}_{1}=(1500+150)=₹ 1650$

दूसरे वर्ष का ब्याज $\left(\mathrm{I}_{2}\right)=\frac{P_{2} R T}{100}=\frac{1650 \times 10 \times 1}{100}=₹ 165$
द्वितीय वर्ष के अंत में बैंक को भुगतान करने की राशि=(1650+165)=₹ 1815
यहाँ मिश्रधन और चक्रवृद्धि ब्याज ₹ 1815
2 वर्ष का चक्रबृद्धि ब्याज $=$ मिश्रधन तथा चक्रवृद्धि ब्याज - मूलधन $=(1815-1500)=₹ 315$ (प्रथम वर्ष का ब्याज + द्वितीय वर्ष का ब्याज $=150+165=₹ 315$
ध्यान दो कि अपेक्षित चक्रवृद्धि ब्याज, प्रत्येक वर्ष के अंत में प्राप्त ब्याजों का योगफल है ।
अब हम उपर्युक्त स्थिति में 2 वर्ष का चक्रवृद्धि ब्याज और साधारण ब्याज में उपलब्ध अंतर को महसूस करेंगें ।

मूलधन $=₹ 1500$, ब्याज की दर $=10 \%$, समय= 2 वर्ष
2 वर्ष का साधारण ब्याज $=\frac{1500 \times 10 \times 2}{100}=₹ 300$
दोनों ब्याजों में अंत $=315-300=$ ₹ 15
सूचना: साधारण ब्याज के क्षेत्र में मूलधन प्रत्येक वर्ष के लिए बराबर रहता है, जबकि चक्रवृद्धि ब्याज के क्षेत्र में हर वर्ष यह बदलता रहता है । क्योंकि परवर्ती वर्ष का मूलधन, पूर्ववर्ती वर्ष के मूलधन और ब्याज का संयोजन होकर बनता है ।

खुद करो: (1) मूलधन ₹ 100 है। वार्षिक ब्याज की दर 10% है। 3 वर्ष के साधारण ब्याज और चक्रवृद्धि ब्याज ज्ञात करो ।
(2) मूलधन ₹ 10,000 है। तो 10% वार्षिक ब्याज की दर से 3 वर्ष का चक्रवृद्धि ब्याज ज्ञात करो । (प्रत्येक वर्ष के अंत में मिले ब्याज और मूलधन का संयोजन करके चक्रवृद्धि ब्याज ज्ञात करो ।)

8.4.1 चक्रवृद्धि ब्याज का हिसाब करने के लिए सूत्र का प्रयोग:

माना कि मूलधन $=P$, वार्षिक ब्याज की दर= $\mathrm{R} \%$
प्रथम वर्ष का ब्याज $=\left(\mathrm{I}_{1}\right)=\frac{P R \times 1}{100}=\frac{P R}{100}$ रुपए
प्रथम वर्ष का मिश्र धन $\left(\mathrm{A}_{1}\right)=$ द्वितीय वर्ष का मूलधन प्रथम वर्ष का मूलधन + प्रथम वर्ष का ब्याज $=P+\frac{P R}{100}=p\left(1+\frac{R}{100}\right)$

द्वितीय वर्ष का ब्याज $\left(\mathrm{I}_{2}\right)=P\left(1+\frac{R}{100}\right) \times \frac{R}{100}$ रुपए

तृतीय वर्ष का मूलधन $\left(\mathrm{A}_{2}\right)=P\left(1+\frac{R}{100}\right)+P\left(1+\frac{R}{100}\right) \times \frac{R}{100}$ रुपए

$$
=P\left(1+\frac{R}{100}\right)\left(1+\frac{R}{100}\right) \text { रुपए }=P\left(1+\frac{R}{100}\right)^{2} \text { रुपए }
$$

तृतीय वर्ष का ब्याज $\mathrm{I}_{3}=P\left(1+\frac{R}{100}\right)^{2} \times \frac{R}{100}$
तृतीय वर्ष का मिश्रधन $\mathrm{A}_{3}=P\left(1+\frac{R}{100}\right)^{3}$
उसी प्रकार प्रमाणित किया जा सकता है कि n वर्ष के अंत में ।
मिश्र धन $=\mathbf{A}=P\left(1+\frac{P}{100}\right)^{3}$
जहाँ मूलधन $=\mathbf{P}$, ब्याज की दर $=\mathbf{R} \%$, समय $=\mathrm{n}$ वर्ष
याद रखो : चक्रवृद्धि ब्याज (C.I.) Compound Interest $=$ मिश्रधन(A) - मूलधन(\mathbf{P})
विशेष सूचना : जहाँ ब्याज का हिसाब करने के लिए समय का उल्लेख नहीं रहता, वहाँ ब्याज के हिसाब का समय एक वर्ष माना जाता है । ब्याज के हिसाब के समय को ब्याज का भुगतान समय भी कहा जाता है ।

उदाहरण-2 : ₹ 1000 का 10% बार्षिक ब्याज की दर से 3 वर्ष का चक्रवृद्धि ब्याज ज्ञात करो । (ब्याज का संयोजन 1 वर्ष है)

हल : मूलधन $(\mathrm{P})=₹ 1000$, ब्याज की दर $\mathrm{R} \%=10 \%$, समय $(\mathrm{n})=3$ वर्ष

$$
\begin{aligned}
& (\mathrm{A})=\mathrm{p}\left(1+\frac{R}{100}\right)^{n} \ldots \ldots .(1) \\
& =1000\left(1+\frac{10}{100}\right)^{3}=1000\left(\frac{11}{10}\right)^{3}=\frac{1000 \times 1331}{1000}=1331 \text { रुपए }
\end{aligned}
$$

चक्रवृद्धि ब्याज $=\mathrm{A}-\mathrm{P}=1331-1000=₹ 331$ (अपेक्षित उत्तर)
उदाहरण-3: वार्षिक 5% ब्याज की दर से ₹ 800 का 3 वर्ष का चक्रवृद्धि ब्याज ज्ञात करो ।
हल : मूलधन $(\mathrm{P})=₹ 800$, ब्याज की दर $=\mathrm{R} \%=5 \%$, समय $=\mathrm{n}=3$ वर्ष
मिश्रधन (A) $=\mathrm{P}\left(1+\frac{R}{100}\right)^{n}=800\left(1+\frac{5}{100}\right)^{3}=800\left(\frac{21}{20}\right)^{3}$

$$
\frac{800 \times 9261}{8000}=₹ 926.10
$$

चक्रवृद्धि ब्याज $=$ मिश्रधन - मूलधन $=₹ 926.10-₹ 800=₹ 126.10$ (अपेक्षित उत्तर)

उदाहरण-4: 12% ब्याज की दर से कितने वर्ष के लिए ₹ 5400 बैंक में जमा रखने से मिश्र (चक्रवृद्धि) धन ₹ 6773.76 होगा। (ब्याज का संयोजन वार्षिक है)

हल : मूलधन=P= ₹5400
मिश्रधन $(A)=6773.76$, ब्याज की दर $(R \%)=12 \%$, समय $=(n)$
हम जानते हैं : $\mathrm{A}=\mathrm{P}\left(1+\frac{R}{100}\right)^{n} \Rightarrow 6773.76=5400\left(1+\frac{12}{100}\right)^{n}$
$\Rightarrow \frac{6773.76}{5400}=\left(1+\frac{3}{25}\right)^{n} \Rightarrow \frac{677376}{540000}=\left(\frac{28}{25}\right)^{n} \Rightarrow \frac{784}{625}=\left(\frac{28}{25}\right)^{n}$
$\left(\frac{28}{25}\right)^{n}=\left(\frac{28}{25}\right)^{2} \Rightarrow n=2$ (अपेक्षित उत्तर)
उदाहरण-5: एक गाँव में 8000 लोग रहते हैं। हर साल 10% दर से आबादी बढती है। 3 साल बाद गाँव की आबादी कितनी होगी ?

हल : यहाँ $(\mathrm{P})=8000$
वार्षिक वृद्धि की दर $\mathrm{R} \%=10 \%$, समय $(\mathrm{n})=3$ वर्ष
तीन साल के बाद आबादी $(\mathrm{A})=\mathrm{P}\left(1+\frac{R}{100}\right)^{n}$
$\mathrm{A}=8000\left(1+\frac{10}{100}\right)^{3}=8000\left(\frac{11}{10}\right)^{3}=\frac{8000 \times 1331}{1000}=10,648$
$\therefore 3$ साल बाद गाँव की आबादी 10,648 होगी ।

8.4.2 दर का अर्धवार्षिक या त्रैमासिक संयोजन

अब देखें, वार्षिक चक्रवृद्धि और अर्धवार्षिक चक्रवृद्धि में क्या अंतर है । वार्षिक चक्रवृद्धि के क्षेत्र में हमें वर्ष के अंत में ब्याज को मूलधन के साथ संयोजित करना पड़ता है। चक्रवृद्धि ब्याज के क्षेत्र में हर छह महीने में ब्याज का मूलधन ज्ञात होता है ।

अर्थात् जब ब्याज देने का समय 6 महीने में होगा, तब एक वर्ष में दो बार ब्याज ज्ञात करना होगा । ऐसे क्षेत्र में ब्याज की दर आधी होगी । पर समय दुगुना होगा । उसी प्रकार ब्याज देने का समय (संयोजन) तीन महीने में होगा तो ब्याज की दर एक चौथाई होगी, पर समय चार गुना होगा ।

उदाहरण-6: ब्याज का संयोजन 6 महीने में होने पर ₹ 2048 का वार्षिक $12 \frac{1}{2} \%$ ब्याज की दर से $1 \frac{1}{2} \%$ वर्ष का चक्रवृद्धि ब्याज ज्ञात करो ।

हल : यहाँ वार्षिक ब्याज की दर $12 \frac{1}{2} \%$ है । 6 महीने में ब्याज की दर $=6 \frac{1}{4} \%$ होगी ।
$1 \frac{1}{2} \%$ वर्ष $=18$ महीने $=6$ महीनेवाले तीन संयोजन । मूलधन $(\mathrm{P})=2048$, ब्याज की दर $=6 \frac{1}{4} \%$ समय $(\mathrm{n})=3$ (हर 6 महीने में एकबार)

मिश्र धन $(\mathrm{A})=\mathrm{P}\left(1+\frac{R}{100}\right)^{n}=2048\left(1+\frac{25}{400}\right)^{3}$
$=2048\left(\frac{17}{16}\right)^{3}=2048 \times \frac{4913}{4096}=₹ 2456.50$
\therefore चक्रवृद्धि ब्याज $\mathrm{A}-\mathrm{P}=2456.50-2048.00=₹ 408.50$ (अपेक्षित उत्तर)
उदाहरण-7: ब्याज का संयोजन तीन महीने में होगा । तब ₹ 240000 का वार्षिक 10% ब्याज की दर से 9 महीने का मिश्रधन ज्ञात करो ।

हल : मूलधन $(\mathrm{P})=₹ 240000$, समय- 9 महीने $=3$ संयोजन अर्थात् $\mathrm{n}=3$
तीन महीने को ब्याज की दर $=\left(\frac{10}{4}\right) \%=2 \frac{1}{2} \%$ (यह वार्षिक ब्याज की दर की एक चौथाई है)
मिश्रधन $=(\mathrm{A})=P\left(1+\frac{R}{100}\right)^{n}=240000\left(1+\frac{5}{100}\right)^{3}$

$$
\begin{aligned}
& =240000 \times\left(1+\frac{1}{40}\right)^{3}=240000 \times\left(\frac{41}{40}\right)^{3} \\
& =240000 \times \frac{41}{40} \times \frac{41}{40} \times \frac{41}{40}=\frac{1033815}{4}=258453.75 \text { रुपए (अपेक्षित उत्तर) }
\end{aligned}
$$

8.4.3 मूल्य का चक्रह्रास

कुछ वस्तुएँ हैं, जैसे कार, स्कूटर, मकान आदि । यह व्यवहृत होकर जितना पुराना होता जाता है, उसका मूल्य उतना घटता जाता है। अनेक स्थितियों में यह मूल्य ह्रास (Depreciation) एक निश्चित दर से होता है । प्रत्येक अवधि (term) के मूल्य ह्रास के बाद प्राप्त मूल्य पर परवर्ती ह्रास होता है । इस मूल्य ह्रास को चक्रह्नस कहते हैं।

इसका हिसाब करने के लिए सूत्र है :
ह्रासप्राप्त मूल्य $(\mathrm{A})=\mathrm{P}\left(1-\frac{R}{100}\right)^{n} \quad[\mathrm{P}=$ वस्तुका प्रांरभिक मूल्य $)$, ह्रास की दर $\mathrm{R} \%$, समय $\left.=\mathrm{n}\right]$ उदाहरण-8

एक मशीन का मूल्य ₹ 16,000 है। इसका व्यवहार होने से इसका मूल्य वार्षिक 5% दर से ह्रासप्राप्त होता है। 3 साल बाद इसका मूल्य कितना होगा ?

हलः प्रारंभिक मूल्य $(\mathrm{P})=₹ 16,000,00$
दर (R) $\%=5 \%$ समय $n=3$ वर्ष
तीन साल बाद इसका मूल्य $(\mathrm{A})=\mathrm{p}\left(1-\frac{R}{100}\right)^{n}=16,000\left(1-\frac{5}{100}\right)^{3}$
$=16,000 \times\left(\frac{19}{20}\right)^{3}=\frac{16000 \times 6859}{8000}=13718.00$ रुपए
तुन वर्ष बाद मशीन का ह्रास प्राप्त मूल्य ₹ 13718.00 होगा ।
अभ्यास- 8(c)

1. ₹ 800 का वार्षिक 8% ब्याज की दर से 2 वर्ष का चक्रवृद्धि ब्याज ज्ञात करो ।
2. ₹ 1500 का 7% ब्याज की दर से 2 वर्ष का मिश्रधन (चक्रवृद्धि ब्याज सहित) ज्ञात करो।
3. ₹ 5000 का 10% ब्याज की दर से 3 वर्ष का मिश्रधन () ज्ञात करो।
4. ₹ 8000 का 5% ब्याज की दर से 3 वर्ष का चक्रवृद्धि ब्याज ज्ञात करो ।
5. एक आदमी ने धान बोने का यंत्र खरीदने के लिए वार्षिक 10% ब्याज की दर से बैंक से ₹ 5000 कर्ज लिया। 3 साल बाद वे कितने रुपए देकर ऋण मुक्त होंगे । (ब्याज का वार्षिक संयोजन होता है।)
6. कमला ने एक स्कूटी खरीदने बैंक से ₹ 26,400 ब्याज 15% की दर से ऋण लिया। 2 वर्ष 4 महीने के बाद वह चक्रवृद्धि ब्याज के साथ कितना मिश्र धन देकर ऋणमुक्त होगा ? (सूचना: $\mathrm{A}=2$ वर्ष का मिश्र चक्रवृद्धि ब्याज + A मूल का $\frac{4}{12}$ वर्ष का साधारण ब्याज)
7. वार्षिक 4% ब्याज की दर से ₹ 6250.00 कितने वर्ष के लिए बैंक में जमा रखने से ₹ 510 ब्याज मिलेगा ?
8. किसी मूलधन का 5% ब्याज की दर से 3 वर्ष का साधारण ब्याज ₹ 540 है। उसी मूलधन का बराबर ब्याज की दर और बराबर समय में चक्रवृद्धि ब्याज कितना अधिक होगा ।
9. किसी मूलधन का 10% ब्याज की दर से 3 वर्ष के चक्रवृद्धि ब्याज और साधारण ब्याज में अंतर ₹ 93.00 है । मूलधन ज्ञात करो ।
10. ब्याज 6 महीने में संयोजित होगा। वार्षिक 12.5% ब्याज की दर से ₹ 2500 का $1 \frac{1}{2}$ वर्ष का मिश्रधन ज्ञात करो ।
11. ब्याज 6 महीने के अंतर में संयोजित होगा । वार्षिक 14% ब्याज की दर से ₹5000 का $1 \frac{1}{2}$ वर्ष का चक्रवृद्धि ब्याज ज्ञात करो ।
12. ब्याज 4 महीने के अंतर में संयोजित होगा । वार्षिक 10% ब्याज की दर से । वर्ष का चक्रवृद्धि ब्याज ज्ञात करो।
13. एक मकान का मूल्य ₹ $2,00,000$ है । हर साल इसका मूल्य 6% की दर से ह्यास होता है । तीन वर्ष बाद इसका ह्रास प्राप्त मूल्य ज्ञात करो ।
14. एक गाँव की जनसंख्या ₹ 20,000 है । प्रतिवर्ष 7% दर से जनसंख्या बढ़ती है । दो साल बाद की जनसंख्या ज्ञात करो।
15. एक स्कूटी का क्रयमूल्य ₹ 42.000 है प्रति वर्ष इसका मूल्य 8% की दर से ह्रास होता है । 2 वर्ष के बाद इसका मूल्य क्या होगा, ज्ञात करो ।

8.5 सूचकांक (Cost of living index):

जीवन धारण की मूल्यसूची (Cost of living Index): चीजों के मूल्य के साथ हम परिचित हैं । भिन्न भिन्न कारणों से दिनों-दिन चीजों के मूल्य में वृद्धि होती जाती है । परिणाम स्वरुप प्रत्येक नागरिक पर जीवन धारण करने के लिए व्यय-भार बढ़ता जाता है । इसलिए एक समय से परवर्ती समय में भिन्न भिन्न चीजों की मूल्य वृद्धि को ध्यान में रखकर जीवन धारण का व्यय भार कितना बढ़ा है, उसे ज्ञात करने की आवश्यकता है । इस व्यय भार वृद्धि को हम एक सूचकांक (Index number) द्वारा व्यक्त करते हैं।

8.5.1 सूचकांक (Index Number):

सूचकांक के माध्यम से सामान्यतया एक निश्चित समय के भीतर दैनंदिन जीवन में व्यवहार में आनेवाली वस्तुओं तथा, कृषि के उत्पाद उद्योगों से प्राप्त उत्पाद आदि के मूल्य में ह्रास या वृद्धि (Price levels) सूचित किया जाता है ।

सूचकांक मूख्यत: तीन प्रकार के होते हैं ।
(i) मूल्य सूचकांक (Price index number) :
(ii) परिमाणात्मक सूचकांक (Quantity index number) :
(iii) जीवन धारण का मूल्य सूचकांक (Cost of living index number) :

8.5.2 जीवन धारण का मूल्य सूचकांक (Cost of living index number):

एक निश्चित वर्ग (Catagory) के लोगों के लिए भिन्न-भिन्न समय पर, भिन्न-भिन्न स्थानों पर मूल्य स्तर पर परिवर्तन (Change in price level) को व्यक्त करने के लिए जो सांख्यिक मान (Numerical Value) व्यवहत होता है, उसे जीवन धारण मूल्य सूचकांक कहते हैं ।

एक मध्यवित्तीय परिवार के लिए दैनंदिन जीवन में प्रयोग में आनेवाली वस्तुओं के लिए मासिक खर्च की तुलना करने हेतु 2014 में कुल मासिक खर्च के साथ 2018 में उन वस्तुओं के लिए हुए मासिक खर्च की तुलना करेंगे ।

हम जिस समय के खर्च के साथ तुलना करते हैं वह मूल वर्ष (Base year) कहलाता है। जिस वर्ष की तुलना करते हैं वह चालू वर्ष (Current year) कहलाता है ।

माना कि मूल वर्ष का कुल खर्च ₹ 100.00 है और चालू वर्ष में उन्हों वस्तुओं के लिए कुल खर्च ₹ 146.00 हुआ ।

यहाँ मूल वर्ष की तुलना में चालू वर्ष में जीवन धारण मूल्य सूचकांक 146 है । यहाँ दोनों 2014 और 2018 में परिवर्तित मूल्य स्तर (Change price level) को 146 संख्या के माध्यम से तय किया गया ।

हम कह सकते हैं कि 2014 मूल वर्ष में जिन वस्तुओं के लिए ₹ 100 खर्च करना पड़ता था उसे परिवार को 2018 में 146 खर्च करना पड़ा।

अतएव 2014 को मूल वर्ष के रूप में लेकर 2018 में जीवन धारण का मूल्य सूचकांक

$$
=\frac{2018 \text { में कुल खर्च का परिमाण }}{2014 \text { में कुल खर्च का परिमाण }} \times 100
$$

अर्थात् जीवन धारण मूल्य सूचकांक $=\frac{\text { चालू वर्ष की कुल खर्च का परिमाण }}{\text { मूल के कुल खर्च का परिमाण }} \times 100$

8.5.3 जीवन धारण मूल्य सूचकांक तय करने की विधि (Method for cost of living index):

1. हम पहले एक समय तय करेंगे (मूल वर्ष), जिस समय के मूल्य के साथ चालू वर्ष के मूल्य की तुलना करेंगे ।
2. हम नित्यप्रति व्यहार में प्रयुक्त होने वाली वस्तुओं का मूल वर्ष के मूल्य और चालू वर्ष के मूल्य संग्रह करेंगे ।
3. जीवन-धारण के लिए किस वस्तु का कितने परिमाण का व्यवहार किया गया है, उसे निर्धारित करेंगें। मान लो एक निश्चित वस्तु के लिए P_{0} : मूल वर्ष में वस्तु का मूल्य

> P1: चालू वर्ष में वस्तु का मूल्य
> W : वस्तु का परिमाण

तब जीवन धारण का मूल्य-सूचकांक $=\frac{\sum \mathrm{WP}_{1}}{\sum \mathrm{WP}_{0}} \times 100$
$\sum \mathrm{WP}_{1}=$ चालू वर्ष में समस्त खर्च का परिमाण
$\sum \mathrm{WP}_{0}=$ मूल वर्ष में समस्त खर्च का परिमाण

8.5.4 जीवन धारण के मूल्य सूचकांक का व्यवहार (uses of cost of living Index Number):

(1) मूल्य सूचकांक विभिन्न सामग्री के फुटकर दर (Retail Price) में परिवर्तन की सूचना देता हैं। मूल वर्ष की तूलना में सामग्री महंगी होती है या सस्ती, उसकी भी सूचना मिलती है ।
(2) यह सरकार को दैनिक मजदूरी (wage), वस्तु का निधारित मूल्य (price), वस्तु पर टैक्स (tax) आदि तय रख करने में सहायता करता है ।
(3) यह सरकारी कर्मचारियों के लिए महंगाई भत्ता (Dearness Allowance), वार्षिक बोनस (Bonus) आदि तय करने में सहायता करती है ।

उदाहरण-1: एक साधारण परिवार के कुछ व्यवहार्य वस्तुओं के निश्चित परिमाण पर 2007 में कुल खर्च ₹ 8200 हुए । यदि 2007 को मूल वर्ष मानकर 2009 में जीवनधारण मूल्य-सूची की निर्देशक संख्या 140.50 हो, तो 2009 में उस परिमाण की व्यवहार्य वस्तुओं पर खर्च कितने रुपए हुए थे, ज्ञात करो।

हल : जीवन धारण मूल्य सूचकांक $=\frac{2009 \text { का कुल खर्च }}{2007 \text { का कुल खर्च }} \times 100$
$=146.50=\frac{\mathbf{2 0 0 9} \text { का कुल खर्च }}{\mathbf{8 2 0 0}} \times 100$
$=2009$ का कुल खर्च $=146.50 \times 82=₹ 12013$
\therefore परिवार का 2009 में कुल खर्च ₹ 12013 हुए थे ।
उदाहरण-2: निम्नलिखित सारणी में 2000 ई. के आरंभ में विभिन्न वस्तुओं के दाम और 2009 ई. के आरंभ में उन वस्तुओं के दाम, उनके व्यवहार का परिमाण आदि का उल्लेख किया गया है । 2000 ई को मूल वर्ष के रूप में लेकर 2009 ई. के आरंभ में जीवन धारण मूल्य सूचकांक ज्ञात करो ।

वस्तुका नाम	वस्तु का परिमाण (w)	2000 ई में प्रति इकाई का मूल्य	2009 में प्रति इकाई का मूल्य $\left(\mathrm{P}_{1}\right)$
चावल	40 कि.ग्रा.	₹ 6.00	₹ 12.00
तेल	5 लीटर	₹ 32.00	$₹ 60$
शक्वर	7 कि.ग्रा.	$₹ 16.00$	$₹ 35$
दूध	15 लीटर	₹ 6.00	₹ 10
मांस	4 कि.ग्रा.	₹ 120.00	$₹ 200$

हल :

वस्तु का नाम	W	P_{O}	WP_{o}	P_{1}	WP_{1}
चावल	40 कि.ग्रा.	₹6.00	₹ 240	₹ 12.00	₹480
तेल	5 लीटर	₹ 32.00	₹ 160	₹60	₹300
शक्कर	7 कि.ग्रा.	₹ 16.00	₹ 112	₹35	₹245
दूध	15 लीटर	₹6.00	₹90	₹10	₹150
मांस	4 कि.ग्रा.	₹ 120.00	₹480	₹200	₹800

जीवनधारण मूल्य सूचकांक $=\frac{\sum \mathrm{WP}_{1}}{\sum \mathrm{WP}_{0}} \times 100=\frac{1975 \times 100}{1082}=182.5$ रुपए (अपेक्षित उत्तर)

उदाहरण-3 : निम्न सारणी के तथ्यों का उपयोग करके जीवन धारण मूल्य-सूचकांक ज्ञात करो:

वस्तु	परिमाण	कि.ग्रा. दर (रुपए में)	
		2000 ई	2004 ई
गेहूँ	15	₹6	₹8.50
शक्कर	5	₹12.50	₹15
चावल	7	₹ 18	₹20
चाय	0.5	₹85	₹90
दाल	2.5	₹22	₹25

हल :

वस्तु	परिमाण कि.ग्रा. में	2000ई. में मूल्य	कुल खर्च (2000)	$\begin{aligned} & 2004 \\ & \text { में मूल्य } \end{aligned}$	कुल खर्च (2004)
गेहूँ	15	₹ 6	₹90	₹ 8.50	₹ 127.50
शक्कर	5	₹12.50	₹62.50	₹ 15	₹75
चावल	7	₹18	₹ 126	₹ 20	₹ 140
चाय	0.5	₹85	₹42.50	₹90	₹45
दाल	2.5	₹22	₹ 55	₹ 25	₹62.50
			₹376		₹450

2000 ई को मूल वर्ष मान लेंगे
2004 (चालू वर्ष) में जीवन धारण मूल्य सूचकांक $=\frac{\mathbf{2 0 0 4} \text { में कुल खर्च }}{\mathbf{2 0 0 0} \text { में कुल खर्च }} \times 100$

$$
\left.=\frac{450.00}{376.00} \times 100=119.68=119.7 \text { (अपेक्षित उत्तर }\right)
$$

विशेष:
2000 ई. को मूल वर्ष के रूप में लेकर 2004 ई. में जीवन धारण मूल्य सूचकांक, या दूसरे अर्थ में वस्तु के मूल्य (Price of the commodities) में 19.7% वृद्धि हुई है । ऐसा कहना होगा । खुद करो:

1. एक राजगीर का दैनिक मजदूरी 2000 ई. में ₹ 125 थी । 2009 ई में यह ₹ 250 हुआ । 2009ई. में जीवन धारण का मूल्य-सूचकांक ज्ञात करो ।
2. जीवन-धारण का मूल्य सूचकांक क्यों एक संख्या है ? उदाहरण के साथ समझाओ ।

अभ्यास-8(d)

1. एक परिवार का कुछ आवश्यकीय वस्तुओं के निश्चित परिमाण का खर्च 2003 ई में था ₹ 8000 । यदि 2013 ई को मूल वर्ष लेकर 2010 ई में जीवन धारण का मूल्य सूचकांक 132.8 हो, तो 2010 ई में उस निश्चित परिमाण की वस्तुओं पर खर्च कितना हुआ था, ज्ञात करो ।
2. एक परिवार में 2002 ई.में. शक्कर के लिए 145 रुपए खर्च हुआ था । 2008 ई में शक्कर के खर्च का परिमाण 210 रुपए हुआ । 2002 को मूल वर्ष लेकर 2008 ई. में जीवन धारण का मूल्य सूचकांक ज्ञात करो ।
3. एक परिवार में आवश्यक वस्तुओं के लिए 2007 ई में ₹ 18900.00 खर्च हुआ था। 2000 ई को मूल वर्ष मानकर 2007 में जीवन धारण का मूल्य सूचकांक 210 हो तो 2000 ई में उसी परिमाण की वस्तुओं पर कुल खर्च कितना हुआ था, ज्ञात करो ।
4. निम्न तथ्य से 2001 ई. को मूल वर्ष मानकर 2005 ई में जीवन धारण का मूल्य सूचकांक ज्ञात करो।

वस्तु	परिमाण कि.ग्रा. में	प्रति इकाई की दर (रुपए में)	
		2001 में	
2005 में			
A	100	6.00	12.00
B	10	8.00	8.00
C	16	5.00	6.50
D	20	40.00	55.00
E	45	15.00	20.00
F	20	20.00	25.00

5. एक परिवार का विभिन्न वस्तुओं की आवश्यकता का परिमाण सन् 1998 ई और 2006 ई. में उनका मूल्य दिया गया हैं। 1998 ई को मूल वर्ष के रूप में लेकर 2006ई. में जीवन धारण मूल्य-सूचकांक ज्ञात करो ।

वस्तु	आवश्यकता का परिमाण	1998 में मूल्य	2006 में मूल्य
चावल	40 कि.ग्रा.	₹2.78	₹3.50
आलू	35 कि.ग्रा.	₹2	₹3
चाय	1 लीटर	₹25	₹32
शक्कर	10 कि.ग्रा.	₹5.90	₹6.50
तेल	2 लीटर	₹ 48.00	₹58

6. निम्न सारणी के तथ्यों का उपयोग करके चालू वर्ष में जीवन धारण का मूल्य सूचकांक ज्ञात करो:

वस्तु	आवश्यकता का	परिमाण	1998 में	मूल्य
चावल	30 कि.ग्रा.	₹3	₹ 14.506 में मूल्य	
दाल	5 कि.ग्रा.	₹ 8	₹32	
तेल	8 लीटर	₹ 16	₹46	
शक्कर	4 कि.ग्रा.	₹4.50	₹ 18	
दूध	20 लीटर	₹3	₹ 14	
मांस	3 कि.ग्रा.	₹ 25	₹ 110	

7. निम्न सारणी के तथ्यों का उपयोग करके जीवन-धारण का मूल्य सूचकांक ज्ञात करो ।

वस्तु	आवश्यकता का परिमाण	मूलवर्ष का मूल्य	चालू वर्ष का मूल्य
चावल	12 कि.ग्रा.	₹9.50	₹ 14
दाल	2 कि.ग्रा.	₹ 27	₹32
सब्जी	12 कि.ग्रा.	₹4	₹6
तेल	4 लिटर	₹32	₹46.50
मसाले	500 ग्राम	₹48	₹60
जलाऊ लकड़ी	8 कि.ग्रा.	₹ 12.25	₹ 19

8. एक मध्य वित्तीय परिवार 1985 ई. और 1995 ई. में जो जो वस्तुओं का व्यवहार करता था उनका प्रतिशत परिमाण, प्रत्येक ईकाई का मूल्य निम्न सारणी में दर्शया गया है । 1985 ई में. मूल वर्ष के रूप में लेकर 1995 ई. में उस परिवार का जीवन धारण का मूल्य, सूचकांक ज्ञात करो ।

वस्तु	खाद्य	पोशाक	आवागमन का खर्च 10%	मकान का किराया 20%	अन्य खर्च 10%
1985 में प्रति इकाई का मूल्य	240	30	60	100	40
1995 में प्रति इकाई का मूल्य	280	35	80	120	85

सूचना: खाद्य $=50 \%=0.5$ इकाई
पोशाक $=10 \%=0.10$ इकाई
आवागमन का खर्च $=10 \%=0.10$ ।इकाई
मकान का किराया $=20 \%=0.20$ इकाई
अन्य खर्च $=10 \%=0.10$ इकाई
प्रत्येक वस्तु के लिए किए गए खर्च (रुपए में) को ज्ञात करके फिर उन्हें इकट्ठा करके
$\sum W P_{o}$ और $\sum W P_{1}$ ज्ञात किया जाएगा ।
9. निम्न सारणी में एक परिवार का खर्च 1995 ई. और 2000 ई. प्रति इकाई का मूल्य दिया गया है । 1995 ई. को मूल वर्ष के रूप में लेकर 2000 ई. में. परिवार के लिए जीवन धारण का मूल्य सूचकांक ज्ञात करो ।

वस्तु	खाद्य	जलावन	पोशाक	मकान का किराया 20%	अन्य खर्च 10%
1985 में प्रति इकाई का मूल्य	₹ 140%	₹ 20	$₹ 60$	$₹ 50$	$₹ 30$
1995 में प्रति इकाई का मूल्य	$₹ 165$	$₹ 23$	$₹ 70$	$₹ 80$	$₹ 35$

10. निम्न तथ्य का व्यवहार करके 2003 ई को मूल वर्ष मानकर 2009 ई. में जीवन धारण का मूल्य सूचकांक ज्ञात करो ।

वस्तु	परिमाण कि.ग्रा. में	मूल्य रुपए में	
		2003में	2009में
A	10	₹7	₹10
B	15	₹12	₹20
C	8	₹25	₹25
D	25	₹12	₹20
E	5	₹50	₹60

8.6 बैंक कारोबार (BANKING):

बैंक एक आर्थिक संस्थान है। वहाँ रुपयों की लेन देन होती है। यहाँ रुपए जमा किये जाते हैं और उधार दिए जाते हैं। कीमती चीजों की सुरक्षा के लिए बैंक की मदद ली जाती है। बैंक में रुपए जमा करने से बैंक कुछ ब्याज देता है । बैंक से ऋण लेने पर बैंक को कुछ ब्याज देना पड़ता हैं। जिस दर से जमा पर ब्याज दिया जाता है, ऋण पर उससे अधिक ब्याज लिया जाता है।

बैंक का इतिहात अर्थ की वृद्धि से साथ जुडा हुआ है। पहले के जमाने में सामान्य वर्ग के लोग अपनी बचत राशि को एक ताकतवर आदमी के जिम्मे रखते थे । वह आदमी उस अर्थ को जरूरतमंद आदमी को ऋण देता था। धीरे धीरे वे कम ब्याज की दर से रुपए रखने लगे और अधिक ब्याज की दर से उधार देने लगे । ऐसे लोगों के संस्थान को गैर सरकारी (घरेलू) बैंक कहा गया । 1974 ई. में सरकार ने 14 बैंक का राष्टीयकरण कर दिया। आजकल प्राय: सब बैंक राष्ट्रीयकरण बैंक हैं। वे बैंक रिजर्व बैंक के निर्देशानुसार कार्य करते हैं।

बैंक के कार्य:

बैंक के विभिन्न कार्यों में से कुछ नीचे दिए गए हैं :
(i) जमा के लिए रुपए लेना
(ii) आवश्यकता पड़ने पर लोगो को रुपए देना
(iii) जमा राशि पर ब्याज देना
(iv) रुपए जमा करने वाले को तत्काल ऋण देना
(v) सुरक्षा बंड का क्रय-विक्रय करना
(vi) लॉकरों को किराए पर देकर कीमती चीजों की सुरक्षा करना
(vii) पर्यटकों को भ्रमण चेक, विदेशी चेक था वैदैशिक मुद्रा के बदले नकद राशि प्रदान करना।
(viii) किसान, दुकानदार, बेरोजगार शिक्षित, आर्थिक दृष्टि से कमजोर लोगों को ऋण प्रदान करके उनकी स्थिति में सुधार लाना।
(ix) स्कूल की फीज, पानी, बिजली, टेलीफोन बिल, मकान का किराया, आयकर की किस्त आदि बैंक के माध्यम से ग्रहण करना।
(x) सरकारी कर्मचारीयों को वेतन और पेंसन पाने वालों को पेंसन प्रदान करना आदि । बैंक में मुख्यत: पाँच प्रकार का आकाउंट (खाते) खुले जाते हैं।

क. चालू खाता (Current Account)
ख. बचत बैंक खाता (Savings Bank Account)
ग. मियादी जमा खाता (Term Deposite Account)
घ. आवर्ती जमा खाता (Recurring Deposite Account)
ङ. नाबालिगों के लिए जमा खाता (Accounts for Minors)
डाकघरों में चालू खातों के अलावा अन्य चार खातों का कारोबार होता है ।
चालू खाता (Current Account): सामान्यतया बड़े बड़े व्यापारी कंपनियाँ चालू खाता खोलते हैं, वे चेक के माध्यम से व्यापार करते हैं। इस खाते में जमा राशि पर बैंक कुछ ब्याज नहीं देता । बरन् कुछ सुविधाएँ मुहैया करता हैं। खाते का मालिक अपनी आवश्यकता के अनुसार एक दिन में एकाधिक बार जमा कर सकेंगे या रुपए निकाल सकेंगे ।

बचत बैंक खाता (Savings Bank Account): वेतन पाने वाले, कम और मध्यम आय करने वाले सामान्यतया बचत बैंक खाता खोलते हैं। इस खाते का मुख्य उद्देश्य है- कम और मध्यम आय करने वालों में बचत की आदत डालना। यह सबसे जनप्रिय खाता है। कोई भी व्यक्ति कम से कम 500 रुपए जमा करके एक खाता खोल सकेगा। प्रत्येक समय में खाते में 500 रुपए न्यूनतम राशि जमा रखना होता है ।

8.6.1 बैंक में खाता खोलने की विधि:

बैंक में खाता खोलने के लिए एक फार्म भरना पड़ता है। उस फर्म में खाता खोलने वाले का पूरा परिचय रहता है। उसे बैंक में कुछ आवश्यक कागजात देने पड़ते हैं। उसमें नमूने हस्ताक्षर भी रहते हैं। एक पासपोर्ट साइज का फोटो, मतदाता परिचय पत्र, या पैन (PAN Permanent Account Number) का जेरक्स देना पड़ता है ।

खाता खोलने के बाद खाते के धारक को बैंक की तरफ से एक पास बुक दिया जाता है। किसी भी कार्य दिवस पर निर्धारित समय पर बैंक जाकर खाते का धारक जमा करते हैं या रुपए निकालते हैं। बचत बैंक से रुपए निकालने या जमा करने के लिए एक विशेष फर्म भरना पड़ता है। वे फर्म बैंक में उपलब्ध होते हैं। रुपए निकालने के लिए विशेष फर्म के अलावा जमा खाते के धारक को एक चेक बुक् दिया जाता है। जो चेकबूक का व्यवहार करते हैं उनके स्टेट बैंक के खाते में कम से कम तीन हजार रुपए और दूसरे बैंकों के खाते में कम से कम पाँच सौ रुपए जमा रखने चाहिए । डाकघर में कोई भी व्यक्ति बचत बैंक खाता खोल सकेंगे ।
पास बुक (जमा खाता) का नमूना यहाँ दिया गया।

Date तारीख	Particulars विवरण	Cheque No. चेक नं.	Ammount Withdrawn Rs. $\quad \mathrm{p}$ राशि निकाला गया	Ammount Deposited Rs. p जमा राशि	Balance Rs. p शेष	Signature हस्ताक्षर

मियादी जमा खाता (Term Deposit Account)
यदि कोई व्यक्ति अपने रुपए खर्च न करके बचत बढ़ाना चाहे तो वह मियादी जमा खाते में एक निश्चित समय के लिए जमा रख सकते हैं। निश्चित् अवधि पूरी होने से पहले ये रुपए नहीं निकाले जाते । इसके लिए बैंक प्रचलिए ब्याज की दर से अधिक ब्याज देता है । समय सीमा से पहले रुपए निकालने के लिए बैंक से अनुमति लेनी पड़ती है और उसे पूर्व निश्चित ब्याज की दर से कम दर पर ब्याज मिलता है। 2000 ई. के लिए मियादी जमा की विभिन्न अवधि के लिए ब्याज का दर इस प्रकार है।

15 दिन 45 दिन तक ब्याज की दर 2.5%
46 दिन 90 दिन तक ब्याज की दर 3.5%
91 दिन 180 दिन तक ब्याज की दर 4.75%
191 दिन 1 वर्ष तक ब्याज की दर 5.5%

2 वर्ष से 3 वर्ष तक ब्याज की दर 6.5%
3 वर्ष से 5 वर्ष तक ब्याज की दर 6.75%
5 वर्ष से 8 वर्ष तक ब्याज की दर 7%
8 वर्ष से 10 वर्ष तक ब्याज की दर 7.25%

यह ब्याज की दर भारतीय स्टेट बैंक द्वारा लागू हुई है ।
आवर्ती जमा खाता (Recurring Deposit Account): आवर्ती जमा खाता एक प्रकार का स्थानीय जमा खाता है। इस खाते की परिपक्वता के लिए एक निश्चित समय सीमा (माना कि एक साल) निर्धारित होती है। यह अवधि 5 वर्ष या 10 वर्ष की हो सकती है। इस खाते में एक निश्चित राशि पूर्व निर्धारित शर्त के मुताबिक हर महीने में, तीन महीने में, छह त्रहीने में या एक वर्ष में एक बार जमा की जाती है। अवधि के अंत में पूरा मिश्र धन खाते के धारक को मिलता है।

नाबालिगों के लिए खाता: नाबालिगों को लिए भी बैंक में खाते खोले जाते हैं। जब तक वे बालिग/बालिगा नहों हो जाते, तब तक उनके खाते अभिभावकों द्वारा चालू रहते हैं ।

8.6.2 बचत बैंक के खाते के ब्याज का हिसाब:

(i) हर महीने के दस तारीख से उस महीने की अंतिम तारीख तक खाते में रही सर्वनिम्न जमा राशि पर ब्याज का हिसाब किया जाता है।
(ii) सर्वनिम्न शेष जमा राशि को 10 के समापवर्तर्य के रूप में लिया जाता है। सर्वनिम्न राशि ₹ 560 से ₹ 565 के बीच में होता, तो उसे ₹ 560 के रूप में लिया जाता है। सर्वनिम्न राशि ₹ 565 से ₹ 570 के बीच रही तो उसे ₹ 570 के रूप में हिसाब किया जाता है। 5 रुपए तक की जमा राशि पर कोई ब्याज नहीं मिलता ।
(iii) हर महीने के सर्वनिम्न शेष राशि को मूलधन (P) के रूप में लेकर ब्याज का हिसाब किया जाता है ।
(iv) उपर्युक्त मूलधन के लिए 1 महीने को $\frac{1}{12}$ वर्ष मानकर साधारण ब्याज का हिसाब किया जाता है । साधारण ब्याज का हिसाब करने के लिए $1=\frac{P R T}{100}$ सूत्र का प्रयोग किया जाता है ।
(v) जिस महीने में खाता रद्द होता है, उस महीने के ब्याज का हिसाब नहीं किया जाता ।
(vi) ब्याज का हिसाब हर महीने में होने पर भी ब्याज वर्ष में दो बार, मार्च 31 को और सितम्बर 30 को खाते के धारक के खाते में बैंक की तरफ से जमा दिया जाता है। कई बैंको में ब्याज का हिसाब जून 30 को और दिसम्बर 31 को किया जाता है।

स्टेट बैंक ऑफ इंडिया की तरफ से बचत बैंक खाते के लिए ब्याज की दर वार्षिक 4.5% है । यह वर्ष में दो बार दिया जाता है । डाकघर में भी बचत खाते के लिए वार्षिक 4.5% की दर से ब्याज दिया जाता है।

उदाहरण-1 :
हबीब ने भारतीय स्टेट बैंक में 2.7 .09 को 500 रुपए जमा करके अपना एक खाता खोला । उसने 9 तारीख को 720 रुपए जमा किए । 17 तारीख को 200 रुपए निकाल लिए। फिर 22 तारीख को 100 रुपए जमा किए। तब उन्हें 2009 जुलाई को कितना ब्याज मिलेगा ?

हल:

तारीख	लेन-देन का चेक नं. विवरण	जमा राशि	बकाया	शेष	हस्ताक्षर	
2.7 .09	रुपए में		500		500	
9.7 .09	रुपए में		720		1220	
17.7 .09	रुपए में	301		200.00	1020	
22.7 .09	रुपए में		100		1120	

जुलाई की 10 तारीख से महीने की अंतिम तारीख तक सवनिम्न शेष/बकाया ₹ 1020 है । उन्हें 22 तारीख को की गई जमा राशि पर ब्याज नहीं मिलेगा ।
उदाहरण-2: नमिता पंडा का ग्राम्य बैंक में एक बचत खाता है । खाते में मई और जून 2006 के लिए लेनदेन का विवरण नीचे दिया गया है ।

तारीख	लेन-देन का विवरण	चेक नं	जमा	निकास	शेष	हस्ताक्षर
मई 3	रुपए में		200		200	
मई 8	रुपए में		300		500	
जून 1	चेक में	501	2000		2500	
जून 1	चेक में	302		15	2485	
जून 6	चेक में	303		485	2000	

मई और जून के लिए नमिता को कितना ब्याज मिलेगा ? जब वार्षिक ब्याज की दर 4.5% है । यदि जून में खाता बंद नहीं किया गया हो ।

हल :

मई की 10 तारीख से 31 तारीख तक बकाया शेष है ₹ 500 । इस पर उन्हें ब्याज मिलेगा । जून में सर्वनिम्न शेष राशि है ₹2000 । अतएव

मई के लिए सर्व निम्न जमा राशि = ₹500
जुन के लिए सर्वनिम्न जमा राशि = ₹2000

$$
\text { कुल } \quad=₹ 2500
$$

इस मूलधन के लिए एक महीने का ब्याज $=\frac{P \times R \times T}{100}=\frac{2500 \times 4.5}{100} \times \frac{1}{12}=\frac{875}{12}=₹ 9.00$ (उत्तर)
उदाहरण-3: रिंकू के बचत खाते का एक भाग नीचे दिया गया है। जब हर वर्ष मार्च 31 को और सितम्बर 30 को ब्याज का हिसाब किया जाता है, तब वार्षिक 4.5% ब्याज की दर से सितम्बर 30 को उन्हें ब्याज कितने रुपए मिलेंगे ?

तारीख	लेन-देन का विवरण	चेक नं.	जमा (₹)	निकास (₹)	बकाया/शेष (₹)	हस्ताक्षर
अप्रेल 1	बकाया				2000	
अप्रेल 6	रुपए में		600		2600	
अप्रेल 16	लोकल चेक		1200		3800	
मई, 9		108	800		3100	
मई, 10	रुपए में			700	3900	
मई, 12		109	1500		2700	
जुलाई, 10	रुपए में			1200	4200	
जुलाई, 19	रुपए में			1000	3200	
जुलाई, 30		110		600	2600	

हल:
अप्रैल से सितम्बर के लिए सर्वनिम्न जमा राशि इस प्रकार है -
अप्रेल
₹2600

मई
₹ 2700
जुन ₹2700 (जुन के महीने में जमा नहीं हुआ निकास भी नहीं)
जुलाई ₹2600
अगस्त ₹2600 (अगस्त में वही राशि जमा है)
सितम्बर ₹2600 (सितम्बर में वही राशि जमा है ।)
₹ 15,800
₹ 15800 मूलधन का एक महीने के लिए वार्षिक
4.5% ब्याज की दर से ब्याज
मूलधन $(\mathrm{P})=15,800, \mathrm{R} \%=4.5 \%$, समय $\mathrm{T}=1$ महीना $=\frac{1}{12}$ वर्ष
ब्याज $=\frac{P \times R \times T}{100}=\frac{15800 \times 4.5 \times 1}{100 \times 12}=59.25$ रुपए (उत्तर)

उदाहरण-4: सौरभ ने ₹2000 देकर स्टेट बैंक में 16.1.2007 में एक बचत बैंक खाता खोला। उस वर्ष जनवरी से मार्च तक उसकी लेन-देन का विवरण निम्न प्रकार का है।

24.1.2007	में	₹ 875 निकाला
28.1.2007	में	₹ 376 जमा किया
3.2.2007	में	₹ 450 जमा किया
10.2.2007	में	₹ 280 निकाला
5.3.2007	में	₹ 788 जमा किया

इन तथ्यों को बचत बैंक खाते में भरो । मार्च के अंत में उसे 4.5% ब्याज की दर से क्या ब्याज मिलेगा ?
हल:
सौरभ के खाते के एक पृष्ठ का विवरण:

तारीख	विवरण	जमा रुपए में	निकास रुपए में	बकाया/शेष रुपए में	हस्ताक्षर
16.1.2007	जमा	₹2000		₹2000	
24.1.2007	अपने लिए		$₹ 875$	$₹ 1125$	
28.1 .2007		$₹ 376$		$₹ 1501$	
3.2 .2007		₹450		$₹ 1951$	
10.2 .2007	चेक	$₹ 280.00$	$₹ 1671$		
5.3 .2007		788.00		$₹ 2459$	

जनवरी के लिए सर्वनिम्न बकाया राशि $0.00 \quad 0.00$
फरवरी के लिए सर्वनिम्न बकाया राशि $1671 \quad 1671.00$
मार्च के लिए सर्वनिम्न बकाया राशि $2459 \quad 2460.00$
मूलधन (P) = ₹4130.00
\therefore मूलधन $(\mathrm{P})=4130.00$
समय $\mathrm{T}=1$ महीना $=\frac{1}{12}$ वर्ष
ब्याज की दर $=(\mathrm{R} \%)=4 \%=\frac{4}{100}$
\therefore ब्याज $=\frac{4130 \times 4 \times \frac{1}{12}}{100}$ रुपए $=\frac{4130 \times 4}{12 \times 100}=13.77$ रुपए (उत्तर)

अभ्यास-8(e)

1 से 3 तक प्रश्नों के उत्तर पाने के लिए किन्ही दो राष्ट्रीयकरण बैंक की सहायता ली जा सकती हैं।

1. सर्वनिम्न कितने रुपए देकर बैंक में खाता खोला जा सकता है ?
2. चेक देकर बैंक से पैसे निकालने के बाद खाते में कम से कम कितने रुपए शेष रहने चाहिए ?
3. बैंक साल में कितनी बार बचत बैंक खाते में हिसाब करता है ।

4 (a) एक आदमी ने ₹ 500 देकर बैंक में एक खाता खोला। यदि जून के अंतिम तारीख तक उसने बैंक से पैसे नहीं निकाले थे या रुपए जमा भी नहीं किए थे, तब जून के अंत में उन्हें 6% ब्याज की दर से कितना ब्याज मिलगा ।
(b) अरुण के बचत बैंक खाते में अगस्त के लिए सर्वनिम्न 5010 रुपए थे । उसने खाता बंद करने के लिए 30 तारीख को आवेदन किया। उन्हें कितने रुपयों के लिए ब्याज मिलेगा ?
5. नम्रता का बैंक में एक खाता है। खाते का विवरण इस प्रकार है :

तारीख	विवरण	चेक नं.	जमा	निकास	बकाया	हस्ताक्षर
फरवरी, 19	जमा		$₹ 1000.00$		$₹ 1000$	
फरवरी, 25	जमा		₹ 2000.00		$₹ 3000$	
मार्च, 1	वेतन		₹ 5000.00		$₹ 8000$	
मार्च, 10		201		$₹ 2000$	$₹ 6000$	
मार्च, 27		202		$₹ 500.00$	$₹ 5500$	
अप्रेल, 1	वेतन		$₹ 5000.00$		$₹ 10,500$	

उपर्युक्त जमा के लिए वार्षिक 5% ब्याज की दर है ।
(i) नम्रता को फरवरी में कितना ब्याज मिलेगा ?
(ii) मार्च के लिए कितना ब्याज मिलेगा ?
(iii) अप्रैल, 21 को खाता बंद करने का दरखास्त करने से कुल जमा के लिए नम्रता को कितना ब्याज मिलेगा ?
6. हरि के पास एक बचत बैंक खाता है। 1998 ई के लिए खाते में जो राशि थी उसका विवरण नीचे दिया गया है। साल में एक बार दिसम्बर में ब्याज का हिसाब 5% ब्याज की दर से होता है । तब हरि को 1998 ई. में कितना ब्याज मिलेगा ?

तारीख	विवरण	चेक नं.	जमा (₹)	निकास (₹)	बकाया (₹)	हस्ताक्षर
1998 जनवरी, 1	बकाया					
फरवरी, 25	रुपए में		600		2300	
मार्च, 1	रुपए में		200		3100	
जून, 10		302		400	2700	
सितम्बर, 8		303		600	2100	
दिसम्बर, 23		304		600	1500	

7. तुमने भारतीय स्टेट बैंक में 500 रुपए देकर जनवरी, 5 तारीख को एक बचत बैंक खाता खोला। जनवरी 12 तारीख को फिर 1000 रुपए जमा किए। जनवरी, 27 तारीख को चेक देकर 300 निकाले । फरवरी 10 तारीख को 700 रुपए जमा किए। मार्च 5 तारीख को 200 रुपए निकाले ।
(i) यह विवरण बचत बैंक खाते में कैसे लिखा जाता है दर्शाओ ।
(ii) यदि वार्षिक ब्याज की दर 5% हो, तब मार्च के अंत में कितना ब्याज मिलेगा ?
8. सलीम के एक बचत बैंक खाता है । खाते के एक पृष्ठ प्रतिलिपि नीचे दी गई है । यदि दिसम्बर के अंत में वर्ष एक बार 5% ब्याज की दर से ब्याज दिया जाता है, तब सलीम को 2001 ई के लिए कितना ब्याज मिलेगा ?

तारीख 2001	विवरण	जमा (₹)	निकास (₹)	बकाया (₹)	हस्ताक्षर
जनवरी, 2	बकाया			1250	
फरवरी, 6	चेक		550	700	
मार्च, 3	जमा	2000		2700	
मार्च,10	जमा	575		3275	
नवंबर, 4	चेक		1500	1775	
दिसम्बर, 4	जमा	3000		4775	

9. नीचे एक बचत बैंक खाते के एक पृष्ठ की प्रतिलिपि दी गई है । यदि फरवरी से जुलाई तक ₹ 111.45 ब्याज मिला था, तब प्रतिशत ब्याज की दर ज्ञात करो ।

तारीख 2001	विवरण	जमा	निकास	बकाया	हस्ताक्षर
फरवरी, 8	बकाया			8500	
फरवरी, 12	रुपए में		4000	4500	
अप्रैल, 12	रुपए में (जमा)	2238		6738	
जून, 15	रुपए में	6000	5000	1738	
जुलाई, 8	रुपए में (जमा)			7738	

10. कुलदीप के बचत बैंक खाते के एक पृष्ठ की प्रतिलिपि नीचे दी गई है । 6% ब्याज की दर से जनवरी से दिसम्बर तक का ब्याज ज्ञात करो ।

तारीख 2000	विवरण	जमा (रुपए में)	निकास (रुपए में)	बकाया (रुपए में)	हस्ताक्षर
जनवरी, 1	बकाया			2000	
फरवरी, 3	चेक से जमा	1550		3550	
फरवरी, 10	जमा	2000		5500	
जून, 17	चेक से		1000	4550	
नवम्बर, 5	जमा	2525		7075	
दिसंबर, 6	चेक से		2500	4575	

11. मानस के बचत बैंक खाते की प्रतिलिपि नीचे दी गई है । 2007 ई जनवरी से 2007, जून तक वार्षिक 4% ब्याज की दर से ब्याज ज्ञात करो ।

तारीख 2007	विवरण	जमा (रुपए में)	निकास (रुपए में)	बकाया (रुपए में)	हस्ताक्षर
3.1.2007	बकाया			2642	
16.1 .2007	अपने लिए		640.00	2002	
5.3 .2007	जमा	850.00		2852	
10.4 .2007	अपने लिए		1130.00	1722	
25.4 .2007	चेक से	650.00		2372	
15.6 .2007	जमा		577.00	1795	

12. सौम्यरंजन के बचत बैंक खाते के एक पृष्ठ की प्रतिलिपि नीचे दी गई है । 25.7.2004 में खाता बंद करके उसे ₹ 6042.45 मिले । प्रतिशत ब्याज की दर ज्ञात करो ।

तारीख 2004	विवरण	जमा (रुपए में)	निकास (रुपए में)	बकाया (रुपए में)ठड़	हस्ताक्षर
जनवरी, 1	बकाया			8026.15	
जनवरी, 5	जमा	650		8676.15	
फरवरी, 13	अपने लिए		2500	6176.15	
जून, 4	चेक से	385		6561.15	
जुलाई, 19	चेक से		718	5842.65	

विचरण (VARIATION)

9.1 विचरण (Variation) :

तुम अपने परिवेश में तरह-तरह के परिवर्तन देखते होंगे । जैसे- एक दिन में भिन्न-भिन्न समय में एक निश्चित पेड़ की परछाई में परिवर्तन, शहर में भिन्न-भिन्न समय में जनसंख्या में परिवर्तन, एक छात्र की उम्र और ऊँचाइ में परिवर्तन आदि । उसी प्रकार जरूरत की दृष्टि से एक परिवार को खर्च में भी परिवर्तन होता है। हम यहाँ वैसी विभिन्न स्थितियों के बारे में चर्चा करेंगे ।

9.1.1 सीधा/प्रत्यक्ष विचरण (Direct Variation) :

परिस्थिति-1

5 लीटर दूध के दाम Rs. 100 है । दो दिन में एक परिवार में खर्च होनेवाले 4 लीटर और 6 लीटर दूध के दाम क्रमशः कितने -कितने होंगे ?

ऐकिक विधि कर प्रयोग करके तुम कह सकते हो कि 4 लीटर और 6 लीटर दूथ के दाम क्रमशः Rs. 80 और Rs. 120 होंगे । अर्थात् कम लीटर दूध के लिए कम मूल्य और अधिक लीटर दूध के लिए अधिक मूल्य देना पड़ेगा

नीचे की सारणी पर ध्यान दो । उसमें भिन्न-भिन्न परिमाण के दूध का मूल्य दिया गया है ।

दूध का परिमाण (लीटर में)	2	3	4	5	6	7	8	9	10
दूध का दाम (रुपए में)	40	60	80	100	120	140	160	180	200

यहाँ आवश्यकता की दृष्टि से दूध का परिमाण बढ़ने से मूल्य में भी आनुपातिक वृद्धि होती है। उसी प्रकार दूध का परमिण कम होने से उसके लिए मूल्य में भी आनुपातिक कमी आती है।

यहाँ दूध के परिमाण पर उसके मूल्य का परिमाण भी निर्भर रहता है। इसलिए ये एक-एक चर राशि हैं। जब एक राशि में परिवर्तन होने से दूसरी राशि में भी परिवर्तन होता है, उस समय इस प्रकार के परिवर्तन को विचरण (variation) कहते हैं।

परिस्थिति 2 :

हम इसी प्रकार की दूसरी परिस्थिति पर चर्चा करेंगे । तुम बाजार में नारियल खरीदने गए। दुकानदार ने बताया कि चार नारियलों का मूल्य Rs. 32 है । यदि उसी मूल्य पर तुम दो नारियल खरीदोगे तो तुम्हें Rs. 16 देने पड़ेंगे अथवा 5 नारियल खरीदने पर Rs. 40 देने होंगे । अर्थात् कम नारियल के लिए कम मूल्य और अधिक नारियल के लिए अधिक मूल्य देना पड़ता है।

परिस्थिति 1 और परिस्थिति 2 पर ध्यान देने से पता चलेगा कि दो राशियों में से एक की वृद्धि से दूसरे की वृद्धि होती है, एक के ह्रास से दूसरे का ह्रास होता है । इसे सीधा समानुपात / विचरण कहते हैं ।

निम्न सारणी में परिस्थिति 2 पर ध्यान दो ।

नारियल का परिमाण (x)	2	5	6	8	9	10
नारियल का मूल्य (y)	16	40	48	64	72	80
$\frac{x}{y}$ का मान	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$

यहाँ x का मान बढ़ने से y का मान बढ़ता है। या x का मान घटने से y का मान घटता है। इस स्थिति में उन दो राशियों को अनुक्रमानुपाती कहते हैं। लेकिन हर परिस्थिति में $\frac{x}{y}$ का मान अपरिवर्त्तित रहता है। नारियल का परिमाण x_{1} से x_{2} में बदलने से मूल्य भी क्रमशः y_{1} से y_{2} बदल जाएगा । यहाँ $\frac{x_{1}}{y_{1}}=\frac{x_{2}}{y_{2}}=k$ (अचर ध्रुवराशि) । सारणी से स्पष्ट हुआ कि, $k=\frac{1}{8}$ ।
x और y के इस प्रकार के विचरण को सीधा/प्रत्यक्ष विचरण (Direct Variation) कहते हैं।
इसे हम $\mathrm{x} \propto \mathrm{y}$ लिखने हैं और पढ़ते हैं- x varies directly as y .
याद रखो : $\mathbf{x} \propto \mathbf{y} \Rightarrow \mathbf{x}=\mathbf{k y} \Rightarrow \frac{x}{y}=\mathbf{k}$

$$
\text { और } \frac{x}{y}=\frac{x_{1}}{Y_{1}}=\frac{x_{2}}{y_{2}}=K
$$

खुद करो :

1. निम्न सारणी पर ध्यान देकर x और y दोनों चर राशियाँ सीधे विचरण मै हैं या नहीं परीक्षण करो ।
(a)

x	20	17	14	11	8	5	2
y	40	34	28	22	16	10	4

(b)

x	6	10	14	18	22	26	30
y	4	8	12	16	20	24	28

(c)

x	5	8	12	15	18	20
y	15	24	36	60	72	100

सूचना : प्रत्येक स्थान पर $\frac{x}{y}$ का मान ज्ञात करो ।
2. x और y दो चर राशीयाँ सीधे विचरण में हैं । निम्न सारणी से p और q का मान ज्ञात करो ।

x	5	p	10
y	8	32	q

सूचना : $\frac{x_{1}}{Y_{1}}=\frac{x_{2}}{y_{2}}=\frac{x_{3}}{y_{3}}=K$ सूत्र का प्रयोग करके p और q का मान ज्ञात करो ।
उदाहरण 1 : चावल प्रति कि.ग्रा. 30 रुपए है । परिवार के मुखिया ने क्रमशः 7 कि.ग्रा., 14 कि.ग्रा., 21 कि.ग्रा., 28 कि.ग्रा. चावल खरीदा। उन्हें कितना-कितना देना पड़ेगा ?

हल : एक कि.ग्रा. चावल का मूल्य $=30$ रुपए।
$\therefore \mathrm{x}_{1}=1$ और $\mathrm{y}_{1}=3$, हमें x_{2} और y_{2} का मूल्य ज्ञात करना होगा ।
सूत्र के अनुसार $\frac{x_{1}}{y_{1}}=\frac{x_{2}}{y_{2}}$ अर्थात् $\mathrm{x}_{1} \mathrm{y}_{2}=\mathrm{x}_{2} \mathrm{y}_{1} \Rightarrow y_{2}=\frac{x_{2} y_{1}}{x_{1}}=\frac{7 \times 30}{1}=210$
$\therefore 7$ कि.ग्रा. चावल का मूल्य Rs. 210 है ।
सूचना : विचरण सूत्र का प्रयोग करके कि.ग्रा. Rs. 30 की दर से तुम 14 कि.ग्रा., 21 कि.ग्रा., 28 कि.ग्रा. चावल का मूल्य ज्ञात कर सकोगे । निम्न सारणी की सहायता लो ।

चावल का परिमाण (x) कि.ग्रा.में	1	7	14	21	28
चावल का मूल्य (y)रुपये में	3	21	42	63	84
$\frac{x}{y}$ का मान	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

ध्यान दो : प्रत्येक स्थिति में $\frac{x}{y}=\frac{1}{3}$ है ।
उदाहरण :3 3 मीटर कपड़े का मूल्य 630 रुपये है । उसी प्रकार का 4 मीटर कपड़े खरीदने पर क्रमशः कितने-कितने रुपए देने होंगे ?

हल : (i) 3 मीटर कपड़े का मूल्य ₹ 630
(x कपड़े की लंबाई, y कपड़े का मूल्य)
$\mathrm{x}_{1}=3, \mathrm{y}_{1}=630$ और $\mathrm{x}_{2}=4$, हमे y_{2} ज्ञात करना है ।

विचरण सूत्र के अनुसार : $\frac{x_{1}}{y_{1}}=\frac{x_{2}}{y_{2}}$ अथवा $y_{2}=\frac{x_{2} y_{1}}{x_{1}}=\frac{4 \times 630}{3}=840$
$\therefore 4$ मीटर कपड़े का मूल्य ₹ 840 है ।
(ii) उसी प्रकार $\mathrm{x}_{1}=3, \mathrm{y}_{1}=630, \mathrm{x}_{2}=6$ हो तो
y_{2} ज्ञात करने के लिए सूत्र : $\frac{\mathrm{x}_{1}}{\mathrm{y}_{1}}=\frac{\mathrm{x}_{2}}{\mathrm{y}_{2}} \Rightarrow \mathrm{y}_{2}=\frac{\mathrm{x}_{2} \mathrm{y}_{1}}{\mathrm{x}_{1}} \Rightarrow \frac{6 \times 630}{3}=1260$
$\therefore 6$ मीटर कपड़े का दाम Rs. 1260 है ।
(iii) $\mathrm{x}_{1}=3, \mathrm{y}_{1}=630, \mathrm{x}_{2}=8$ हो तो y_{2} निर्णय करो ।

विचरण का सूत्र : $\frac{\mathrm{x}_{1}}{\mathrm{y}_{1}}=\frac{\mathrm{x}_{2}}{\mathrm{y}_{2}} \Rightarrow \mathrm{x}_{1} \mathrm{y}_{2}=\mathrm{x}_{2} \mathrm{y}_{1}$

$$
\Rightarrow \mathrm{y}_{2}=\frac{\mathrm{x}_{2} \mathrm{y}_{1}}{\mathrm{x}_{1}} \Rightarrow \frac{8 \times 630}{3}=1680
$$

$\therefore 8$ मीटर कपड़े का दाम ₹ 1680 है ।

अभ्यास 9 (a)

1. शून्यस्थान भरो, $\frac{x}{y}=K$ (अचर) $K=\frac{1}{2}$

संतरों की संख्या (x)	5			9			7	
संतरों का मूल्य रुपये में (y)	10	16	8		36	20		26

2. विचरण सूत्र का प्रयोग करके निम्न प्रश्नों के उत्तर दो :
(a) 3 केलों के दाम 15 रुपये हैं ।
(i) 12 केलों के दाम ज्ञात करो ।
(i) 25 रुपये में कितने केले मिलेंगे ?
(b) एक मजदूर को रोज मजदूरी ₹ 140 मिलते हैं ।
(i) उसकी 5 दिन की मजदूरी ज्ञात करो ।
(ii) ₹ 840 मजदूरी पाने के लिए उसे कितने दिन काम करने पड़ेगे ?
3. तीन मोमवत्तियों के दाम ₹ 24 हैं । ₹ 120 में उसी प्रकार की कितनी मोमबत्तियाँ मिलेंगी ?
4. 6 कॉफियों की कीमत 90 रुपये हैं । उसी प्रकार की 15 कॉपियों की कीमत कितनी होगी ? ₹ 75 में कितनी कॉपियाँ खरीदी जा सकेंगी ?
5. दो कि.ग्रा. आलू की कीमत 9 रुपये हैं । 5 कि.ग्रा. आलू की कीमत बताओ । ₹ 27 में कितने कि.ग्रा. आलू मिलेगा ?
6. एक स्कूटर 3 घंटे में 120 कि.मी. तय करता है । उसी रफ्तार से 8 घंटे में वह कितने कि.मी. तय करेगा ? उसी रप्तार से 200 कि.मी. जाने के लिए कितना समय लगेगा ?
7. अंडे प्रति डजन ₹ 60 है । 6 अंडों की कीमत ज्ञात करो । ₹ 100 में कितने अंडे मिलेंगे ?
8. बस में 15 कि.मी. जाने के लिए ₹ 20 किराया है । उसी बस में 80 कि.मी. जाने के लिए कितना किराया देना पड़ेगा ?
9. एक स्कूटर को 45 कि.मी. रास्ता तय करने के लिए 1 लीटर पेट्रोल की आवश्यकात पड़ती है । उसी स्कूटर से 225 कि.मी रास्ता तय करने के लिए कितना पेट्रोल आवश्यक है ?
10. एक परिवार में खाने के लिए एक हफ्ते में ₹ 1050 रुपए चाहिए । उसी परिवार में सदस्यों की संख्या न बदलने पर 2009 ई के फरबरी महीन में कितना खर्च होगा ?
11. 5 लीटर खाने के तेल की कीमत ₹ 300 है । हर महीने में 12 लीटर तेल खर्च करने से कितना खर्च होगा ?
12. एक विक्रेता को 50 अखबार बेचने से ₹ 18 कमीशन मिलता है । कितना अखबार बेचने से ₹ 54 कमीशन मिलेगा । 300 अखबार बेचने से कितना कमीशन मिलेगा ?

9.2 प्रतिलोमी विचरण (Inverse Variation) :

कुछ ऐसी राशियाँ हैं, यदि एक राशि में वृद्धि हाती है तो दूसरी राशि में कमी आती है । एक में कमी होने पर दूसरी में वृद्धि होती है । हम कुछ स्थितियों पर चर्चा करेंगे ।

परिस्थिति 3 :

30 कि.मी. प्रति घंटा जाने वाली एक कार 1200 कि.मी रास्ता तय करने के लिए 20 घंटे समय लेती है । वह कार यदि 40 कि.मी. प्रति घंटा रास्ता तय करेगी, तो कितना समय लगेगा ?

यहाँ तुम्हारा उत्तर होगा, 30 घंटे । इससे स्पष्ट होता है कि कार की रफ्तार कम हो जाने से उसी दूरी के लिए समय अधिक लगता है ।

नीचे की सारणी को देखो । कार की रफ्तार में परिवर्तन होने से निश्चिति दूरी तय करने के लिए जो समय लगता है, उसे नीचे दर्शाया गया है ।

कार की रफ्तार कि.मी/घंटा	60	50	40	30	20	10
1200 कि.मी. रास्ता तय करने को						
आवश्यक समय (घंटे में)						

उसी सारणी से स्पष्ट होता है कि कार की रफ्तार बढ़ने से दूरी तय करने का आवश्यक समय घटता है । रफ्तार घटने से आवश्यक समय की वृद्धि होती है ।

इस दोनों चर राशियों पर ध्यान दो । प्रत्येक स्थिति में चर राशिद्वय को सूचित करने वाली संख्या द्वय का गुणनफल बराबर होता है।

अर्थात् $60 \times 20=50 \times 24=40 \times 30=\ldots \ldots=1200$

परिस्थिति 4 :

हम अब दूसरी परिस्थिति पर चर्चा करेंगे । एक काम 8 मजदूर 3 दिन में समाप्त करते हैं। वही काम क्रमशः 6 मजदूर, 4 मजदूर और 2 मजदूर कितने-कितने दिन में पूरा करेंगे ? तुम्हारा उत्तर होगा : 6 मजदूर, 4 मजदूर, 2 मजदूर उस काम को क्रमश: 4 दिन, 6 दिन और 12 दिन में पूरा करेंगे ।

यहॉ दोनों चर राशि (मजदूरों की संख्या और आवश्यक दिन की संख्या) में से एक की वृद्धि / ह्रास होना दूसरे की ह्रास/वृद्धि का कारण है ।

अब इन तथ्यों को सारणी में प्रस्तुत करेंगे :

मजदूरों की संख्या (x)	8	6	3	2
निश्चित काम पूरा करने का आवश्यक समय दिन में) (y)	3			
$\mathrm{x} \times \mathrm{y}$	24	24	24	24

दोनें राशियाँ x और y हो तो प्रत्येक स्थिति में $\mathrm{xy}=24$, अर्थात् $\mathrm{xy}=\mathrm{K}$ (ध्रुव संख्या)
हमने देखा कि दो राशियाँ इस प्रकार बदलती हैं कि यदि एक राशि में वृद्धि होती है, तो दूसरी राशि में ह्रास होता है तथा एक में ह्रास होने पर दूसरी में वृद्धि होती है । चर राशियों के इस संबंध को प्रतिलोम विचरण (Inverse Variation) कहते हैं । ऐसे अनेक उदाहरण दिए जा सकते हैं ।

यदि x और y दो चर राशियाँ होंगी तब हम लिखते हैं $x \propto \frac{1}{y}$ । उसे पढ़ते है-(x varies inversely as y)
याद रखो : यदि $x \propto \frac{1}{y}$ हो तो $x=\frac{K}{Y}$ या $\mathrm{xy}=\mathrm{k}$ होगा । x का मान x_{1} से x_{2} और y का मान y_{1} से y_{2} में बदलने से उपर्युक्त संबंध के अनुसार
$\mathrm{xy}=\mathrm{x}_{1} \mathrm{y}_{1}=\mathrm{x}_{2} \mathrm{y}_{2}=\mathrm{k}$ अथवा $\mathrm{x}_{1} \mathrm{y}_{1}=\mathrm{x}_{2} \mathrm{y}_{2}$ है ।
खुद करो :

1. निम्न सारणी को देखकर x और y प्रतिलोम विचरण/अनुपात में हैं या नहीं, परीक्षण करेंगे :
(a)

x	50	40	30	20
y	5	6	7	8

(b)

x	100	200	300	400
y	60	30	20	15

(c)

$\mathrm{x}-$	90	60	45	30	20	5
$\mathrm{y}-$	10	15	20	25	30	35

सूचना : प्रत्येक स्थिति में $x y$ का मान ज्ञात करो ।
2. x और y प्रतिलोम विचरण के अंतर्गत हैं । निम्न सारणी से p और q का मान ज्ञात करो ।

$\mathrm{x}-$	6	5	q
$\mathrm{y}-$	80	p	24

सूचना : $\mathrm{x}_{1} \mathrm{y}_{1}=\mathrm{x}_{2} \mathrm{y}_{2}=\mathrm{x}_{3} \mathrm{y}_{3}=\mathrm{k}$ सूत्र का प्रयोग करके p और q का मान ज्ञात करो ।
उदाहरण 3 : एक छात्रावास में 20 छात्रों के लिए 15 दिन का खाद्य था। उसी खाद्य को 30 छात्र कितने दिन में खाएँगे ?

हल : यहाँ $\mathrm{x}_{1}=20 \quad \mathrm{y}_{1}=15$

$$
\mathrm{x}_{2}=30 \quad \mathrm{y}_{2} \text { ज्ञात करना होगा । }
$$

राशि-द्वय प्रतिलोम विचरण में हैं ।
यहाँ $x \propto \frac{1}{y}$ है । सूत्र के अनुसार $\mathrm{x}_{1} \mathrm{y}_{1}=\mathrm{x}_{2} \mathrm{y}_{2} \Rightarrow 20 \times 15 \Rightarrow 30 \times \mathrm{y}_{2} \Rightarrow \mathrm{y}_{2}=\frac{20 \times 15}{30}=10$
वही खाद्य 30 छात्र 10 दिन में खाएँगे।
उदाहरण 4 : एक नाला खोदने के लिए 12 मजदूर 10 दिन का समय लेते हैं। उसी नाले को 4 दिन में खोदने के लिए कितने मजदूर चाहिए ?

हल : यहाँ $\mathrm{x}_{1}=12$ (मजदूर) $\mathrm{y}_{1}=10$ (समय)
$\mathrm{y}_{2}=4$ दिन x_{2} का मान ज्ञात करना है । अर्थात् $x \propto \frac{1}{y}$
सूत्र अनुसार $\mathrm{x}_{1} \mathrm{y}_{1}=\mathrm{x}_{2} \mathrm{y}_{2} \Rightarrow \mathrm{x}_{2}=\frac{x_{1} y_{1}}{y_{2}}=\frac{12 \times 10}{4}=30$
\therefore उसी नाले को 4 दिन में खोदने के लिए 30 मजदूर चहिए।

अभ्यास 9 (b)

1. निम्न चर राशियों में से कौन-कौन सीधे विचरण में और कौन-कौन प्रतिलोम विचरण में हैं, लिखो ।
(i) संतरों की संख्या x और मूल्य y रुपए है ।
(ii) मजदूरी x रुपए और काम का समय y दिन है ।
(iii) निश्चिति दूरी तय करने के लिए समय x घंटा और रफ्तार y कि.मी. प्रति घंटा ।
(iv) निश्चित काम पूरा करने वाले मजदूरों की संख्या x और काम का समय y घंटे ।
(v) बराबर क्षेत्रफल वाले आयत की लंबाई x मीटर और चौड़ाई y मीटर है ।
(vi) मकन को पोतने के लिए मजदूर संख्या x है, और पूरा करने के दिन y है ।
(vii) एक मोमबत्ती दैनिक x घंडे जलने से y दिन जाती है ।
2. एक निश्चित काम पूरा करने के लिए निम्न सारणी के शून्यस्थान भरो:

मजदूरों की संख्या (x)	20	15		30	
दिन की संख्या (y)	6		12		3
$x y=k$					

3. दी गई सारणीयों में से कौन-कौन प्रतिलोम विचरण में हैं, दर्शाओ :
(i)

x	12	8	32
y	16	24	6

(ii)

x	5	10	15	20
y	8	16	24	32

(iii)

x	7	9	11	13
y	56	72	88	104

(iv)

x	30	40	20	24
y	12	9	18	15

4. एक कक्षा में यदि 30 छात्र बैठेंगे तब प्रत्येक छात्र को 4 वर्गमीटर जगह मिलती है। यदि कक्षा में और 15 छात्र दाखिला लेंगे तो प्रत्येक छात्र के लिए कितना वर्ग मीटर जगह कम हो जाएगी ?
5. विद्यालय की पुताई के लिए 6 मजदूर 15 दिन का समय लेते हैं। काम 5 दिन में पूरा करने के लिए और कितने मजदूर आवश्यक हैं ?
6. अंशुमान की वर्षगॉठ पर उसके 6 मित्र आए थे । प्रत्येक को 10 टॉफियाँ दी जाने वाली थी । पर और 4 मित्र अधिक आ गए। प्रत्येक को कितनी टाँफियाँ मिलेंगी ?
7. एक काम का आधा भाग 12 मजदूर 15 दिन में पूरा करते हैं। पूरा काम 30 मजदूर कितने दिन में करेंगे ?
8. निश्चित परिमाण की बुंदिया से 50.50 पैसे मूल्य के 100 लड्डू बनते हैं । उसी परिमाण की बुंदिया से दो दो रुपए के मूल्य के कितने लड्डू बनेंगे ?
9. बराबर क्षेत्रफल वाले 3 आयतों की लंबाई क्रमशः 24,12 और 8 मीटर हैं। (i) उसकी दूसरी भूजाओं की लंबाई ज्ञात करो । (ii) आयतों की चौड़ाई का अनुपात ज्ञात करो । क्या प्रथम प्रश्न के एक से अधिक उत्तर संभब है ? यदि संभव है, तब उसका कारण बताओ ।
10. बाढ़ पीड़ितों के एक आश्रय-स्थल पर 120 व्यक्तिओं के लिए 9 दिन का चिड़वा और गुड़ था। वहाँ आश्रय लेने 180 अधिक आ पहुँचे । वह भोजन कितने दिन जाएगा ?
11. रवि 10 कि.मी. प्रति घंटा की रफ्तार से जाकर स्कूल में 12 मिनट में पहुँचता है। वह अपनी रफ्तार और 2 कि.मी. बढ़ा दे तो कब स्कूल पहुँचेगा ? घर से स्कूल की दूरी कितनी है ?

9.3 संयुक्त विचरण (Joint Variation) :

संयुक्त विचरण की परिभाषा जानने से पहले हम एक परिस्थिति पर ध्यान देंगे ।

परिस्थिति 5 :

माना कि एक आयत की लंबाई l इंकाई है। चौड़ाई b इकाई है। क्षेत्रफल A वर्ग इकाई है। $\therefore \mathrm{lb}=\mathrm{A}$
(i) b का मान स्थिर रखकर l का मान बढ़ाने से A का मान भी बढ़ता है। l का मान भी बढ़ता है । l का मान घटने से A का मान भी बढ़ता है । अर्थात् A (क्षेत्रफल) और l (लंबाई) सीधे विचरण में रहते हैं । इसे संकेत के माध्यम से हम लिखेंगे । संकेत $A \propto L$ द जब b स्थिर रहती है ।)
(ii) वर्तमान् l का मान स्थिर रखकर हम देखेंगे कि A का मान बढ़ेगा तब b का मान बढ़ता है। उसी प्रकार A का मान घटेगा जब b का मान घटता है। अतएव A और b सीधे विचरण में हैं ।
(iii) यदि l और b दोनों बदल जाती हैं तब A का भी परिवर्तन होगा। A, l और b के बीच यह जो संबध है, उसे संयुक्त विचरण कहते है । संकेत के माध्यम से हम लिखेंगे :
$\mathrm{A} \propto \boldsymbol{l} \mathrm{b}$ (जब \boldsymbol{l} और b का परिवर्तित होती है ।)
खुद करो : 15 से.मी. लंबाई, 12 से.मी. चौड़ाई वाले आयत पर उपर्युक्त विचरणों की सत्यता प्रतिपादित करने की कोशिश करो।

आओ, हम उपर्युक्त (i), (ii) और (iii) में उपस्थापित अवधारण का और एक दिशा से विश्लषण करें ।
(iv) A का मूल्य स्थिर रखें । चूँकि $l=\frac{\mathrm{A}}{\mathrm{b}}$, चौड़ाई b को बढ़ेने से l घटती है । चौड़ाई b घटने से l बढ़ती है। अतएव l और b प्रतिलोम विचरण में हैं। इसे संकेत के माध्यम से हम लिखेंगे :

$$
l \propto \frac{1}{\mathrm{~b}} \text { (जब A स्थिर है ।) }
$$

(v) फिर चौड़ाई (b) को स्थिर रखकर लंबाई (l) का घटना और बढ़ना क्षेत्रफल A के घटने और बढ़ने पर निर्भर है ।

इस परिस्थित को हम संकेत के माध्यम से लिखेंगे : $l \propto \mathrm{~A}$ (जब b का मान स्थिर है ।)
(vi) यदि क्षेत्रफल (A) और चौड़ाई (b) दोनों परिवर्तित होते हैं तब लंबाई l का भी परिवर्तन हो जाता है । A का मान बढ़ने और b का मान घटने से l का मान बढ़ता है । उसी प्रकार A का मान घटने और b का मान बढ़ने से l का मान घटता है। इस परिस्थिति को हम निम्न संकेत कें माध्यम में व्यक्त करते हैं:
$l \propto \frac{\mathrm{~A}}{\mathrm{~b}}$ (जब \mathbf{A} और \mathbf{b} दोनों परिवर्तनशील हैं।)
$l, \mathrm{~A}$ और b के इस संबंध में संयुक्त विचरण है । इस पर तुम अधिक बाद में जान सकोगे ।

परिभाषा : तीन या उससे अधिक शून्येतर चर राशियों में से एक राशि अन्य राशियों के गुणनफल के साथ सीधे विचरण में रहने से पहली राशि अन्य राशियों के साथ संयुक्त विचरण में रहती है ।

माना कि x, y, और z तीन शून्येतर राशियाँ हैं ।
(i) यदि $x \propto y$ (z अपरिवर्तित होग और $x \propto z$ (y अपरिवर्तित हो) तब $x \propto y \quad x \propto y z$ (y और z दोनों परिवर्तनशील हैं), इस क्षेत्र में x, y और z संयुक्त विचरण में रहते हैं ।
(ii) यदि $x \propto y \quad$ (z अपरिवर्तित) और $x \propto \frac{1}{z}$ (y अपरिवर्तित हो) तब $x \propto \frac{y}{z}$ (y और z दोनों परिवर्तनशील हो) है । यहाँ भी x के साथ y और z का संयुक्त विचरण होता है ।

याद रखो :

यदि x_{1} और $\mathrm{x}_{2}, \mathrm{x}$ के दो निश्चित मान हें, $\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}$ के दो निश्चित मान हो, तथा z_{1}, और $\mathrm{z}_{2}, \mathrm{z}$ का दो निश्चित मान हो, तब संयुक्त विचरण-
$\mathrm{x} \propto \mathrm{xz}$ के लिए $\frac{x_{1}}{x_{2}}=\frac{y_{1}}{y_{2}} \times \frac{z_{1}}{z_{2}}$ होगा ।
संयुक्त विचरण $\mathrm{x} \propto \frac{\mathrm{y}}{\mathrm{z}}$ के लिए $\frac{x_{1}}{x_{2}}=\frac{y_{1}}{y_{2}} \times \frac{z_{2}}{z_{1}}$ होगा । .सूत्र (ii)

संयुक्त विचरण का प्रयोग :
उदाहरण 5:12 मजदूर 120 मीटर लंबी एक सड़क का काम 36 दिन में पूरा कर देते हैं । तब 48 मजदूर 240 मीटर लंबी सड़क का काम कितने दिन में पूरा करेंगे ?

हल :

मजदूरों की संख्या (x)	सड़क की लम्बाई (y)	दिन की संख्या (z)
$\mathrm{x}_{1}=12$	$\mathrm{y}_{1}=120$ मी	$\mathrm{z}_{1}=36 \quad$ दिन
$\mathrm{x}_{2}=48$	$\mathrm{y}_{2}=240$ मी	$\mathrm{z}_{2}=$?

यहॉ मजदूरों की संख्या अधिक होने से निश्चित परिमाण का काम कम दिन मे पूरा होगा, यदि सड़क की लंबाई (y) स्थिर रहे ।

अब x और z प्रतिलोम विचरण में रहेंगे । $Z \propto \frac{1}{x}$ (y स्थिर हो ।)
मजदूरों की संख्या स्थिर रहकर सड़क की लंबाई अधिक हो तो सड़क का काम पूरा करने के लिए अधिक समय की आवश्यकता पड़ेगी ।
$\therefore \mathrm{y}$ और z सीधे विचरण में होगे । $\therefore Z \propto y$ (x स्थिर हो ।
(i) और (ii) से हमें मिलेगा $Z \propto \frac{y}{x}$ (x और y दोनों परिवर्तनशील हो ।)
$\therefore \frac{z_{1}}{z_{2}}=\frac{y_{1}}{y_{2}} \times \frac{x_{2}}{x_{1}}$
$\rightarrow z_{2}=\frac{x_{1} \times y_{2} \times z_{1}}{x_{2} \times y_{1}} \rightarrow z_{2}=\frac{12 \times 240 \times 36}{48 \times 120}=18$
$\therefore 18$ दिन में शेष कार्य पूरा होगा । (उत्तर)

उदाहरण 6:6 परिक्षक 40 घंटों मे 750 कॉपियाँ जाँचते हैं । तब 4 परीक्षक कितने घंटों मे 800 कॉपियाँ जाँचते हैं । तब 4 परिक्षक कितने घंटोंमे 800 कॉपियाँ जाँचेंगे ?

हल : | (x) परीक्षक संख्या | (y) समय (घंटा में) | (z$)$ कॉपियों की संख्या |
| :--- | :--- | :--- |
| $\mathrm{x}_{1}=6$ | $\mathrm{y}_{1}=40$ | $\mathrm{z}_{1}=750$ |
| $\mathrm{x}_{2}=4$ | $\mathrm{y}_{2}=?$ | $\mathrm{z}_{2}=800$ |

यहाँ कॉपियों की संख्या स्थिर रहने से जाँचने का समय और जाँचनेवालों की संख्या प्रतिलोम विचरण में रहेगी ।

अर्थात् $y \propto \frac{1}{A}$ होगा.
परीक्षकों की संख्या स्थिर रहने से जाँचने का समय और काँपियों की संख्या सीधे विचरण में रहेगी ।
$\therefore y \propto z$ होगा
(i) और (ii) से हम देखेंगे कि x, y और z के बीच संयुक्त विचरण होता है । अत: $\mathrm{y} \propto \frac{z}{x}$ होगा ।
$\frac{y_{1}}{y_{2}}=\frac{z_{1}}{z_{2}} \times \frac{x_{2}}{x_{1}} \rightarrow y_{2}=\frac{x_{1} y_{1} z_{2}}{z_{1} x_{2}} \rightarrow y_{2}=\frac{6 \times 40 \times 800}{750 \times 4}=64$ घंटे ।
$\therefore 4$ परीक्षक 800 कॉपियों जाँचने के लिए 64 घंटे लेंगे ।

अभ्यास - 9 (c)

1. 5 मजदूरों को 8 दिन में ₹ 1600 मजदूरी मिलती है । 8 मजदूरों को कितने दिन में ₹ 2000 मजदूरी मिलेगी ?
2. 10 मजदूर 6 दिन में एक मकान तैयार करते हैं । 8 मकानों को 12 मजदूर कितने दिन में पूरा करेंगे ?
3. 12 मजदूर 15 दिन में 150 मीटर रास्ता बनाने हैं । 18 मजदूर कितने दिन में 300 मीटर रास्ता बना सकेंगे ?
4. 10 परीक्षक 8 दिन में 2000 कॉपियाँ जाँचते हैं । 12 परीक्षक कितने दिन में 3000 कॉपियाँ जाँचेंगे ?
5. 6 बुनकर 8 दिन में 144 मीटर कपड़ा बुनते हैं । 12 बुनकर 9 दिन में कितने मीटर कपड़ा बुनेंगे ?
6. 8 दर्जी 12 दिन में 360 कमीज बना देते हैं । 15 दिन में 450 कमीज बनाने को कितने दर्जी आवश्यक हैं ?
7. 2 पंप 5 घंटे में 3 हौजों से पानी खाली करते हैं । 4 पंप कितने घंटे में उसी प्रकार के 12 हौजों से पानी खाली कर देंगे ?
8. 25 आदमी रोज 6 घंटे काम करके 18 दिन में एक काम पूरा करते हैं । उसी काम को 20 आदमी रोज 5 घंटे काम करके कितने दिन में पूरा करेंगे ?

आँकड़ो का प्रबंधन और चित्रलेख (DATA HANDLING AND GRAPHS)

अध्याय 10

10.1 भूमिका (Introduction) :

दैंदिन जीवन में तुम्हें भिन्न-भिन्न क्षेत्रों से जैसे : खेती, उद्योग, स्वास्थ्य, शिक्षा, अर्थनीति, व्यापार, रक्षा आदि क्षेत्रों में सूचनाएँ मिलती हैं। व्यापार, रक्षा आदि क्षेत्रों से भी कुछ सूचनाएँ मिलती हैं। अखबार और गण माध्यम से भी कुछ तथ्य मिलते हैं। उन तथ्यों की अवधारणा के आधार कर कई सरकारी और गैरसरकारी संस्थाएँ अपने-अपने क्षेत्र में संस्कार लाने या अभिवृद्धि करने के लिए अनुशीलन करते हैं। इसके लिए वे तथ्यों का संग्रह करते हैं। स्वतंत्र रूप से उनको प्रस्तुत करके व्याख्या और विश्लेषण करके निश्चित निष्कर्ष पर पहुँचने का प्रयास करते हैं।

10.2 आँकड़े (Data) :

कुछ क्षेत्रों में आँकड़ो के माध्यम से हमें उपर्युक्त क्षेत्रों के बारे में सूचनाएँ मिलती हैं। नीचे दिए गए उदाहरणों पर ध्यान दो :
(क) तुम्हारी कक्षा में पिछले साल वाषिक परीक्षा में गणित में उत्तीर्ण होने वाले छात्रों और छात्राओं की संख्या।
(ख) पिछले महीने में तुम्हरी दोस्तों द्वारा पढ़ी गई कहानी-पुस्तकों की संख्या।
(ग) पिछले हफ्ते में तुम्हारी कक्षा में प्रत्येक दिन विद्यार्थियों की हाजिरी की संख्या, आदि । उपर्युक्त प्रत्येक क्षेत्र में आँकड़े विभिन्न माध्यमों से प्राप्त किए जाते हैं। इस प्रकार के तथ्यों को सांख्यिक आंकड़ा (Numerical Data) कहते हैं ।

याद रखो : सांख्यिक तथ्य के माध्यम से किसी भी प्रकार की सूचना मिलती है।
किसी निश्चित उद्देश्य को सामने रखकर किसी संस्था या व्यक्ति से तथ्यों का संग्रह किया जाता है । ऐसे आँकड़ो को प्ररम्भिक आँकड़ा (Primary Data) कहते हैं ।

उदाहरण के तौर पर तुम्हरे विद्यालय के प्रधान शिक्षक, कक्षा शिक्षक के माध्यम से तुम्हरी कक्षा के प्रत्येक छात्र या छात्रा को गणित में कितने लंक मिले हैं, उसे जान सकेंगे । यहाँ गणित में प्राप्त अंक सांख्यिक आंकड़ा है।

कुछ क्षेत्रों से समय, साधन, सुविधा के अभाब से आँकड़ा संग्रह करने वालों से आंकड़ा प्राप्त न करके पुस्तकालय, सरकारी कागजातों, अखबारों या टी.वी पर प्रसारित खबर से विभिन्न आँकड़े प्राप्त किए जाते हैं। ऐसे आँकड़े को परोक्ष आँकड़ा (Secondary Data) कहते हैं।

10.3 आँकड़ों का संगठन (Organisation of Data) :

हम प्रत्यक्ष या परोक्ष रूप से आँकड़े प्राप्त करने के बाद उसे लिपिबद्ध करने या निश्रित निष्कर्ष निकालने के लिए उन्हें क्रमबद्ध रूप से संगठित करने की आवश्यकता पड़ती है। निम्न उदाहरण पर ध्यान दो।

माना कि कक्षा शिक्षक 30 छातों के लिए पोशाक बनाने का आदेश देंगे । उन्हें प्रत्येक छात्र की ऊँचाई जानना है। उन्होंने प्रत्येक छात्र की ऊँचाई से.मी. में मापपर रखा। वे मान हैं :

सारणी- 1

$148,150,152,151,152,152,149,150,148,148,150,151,151,152,148,149$, $148,149,150,151,150,152,152,152,149,150,149,149,150$
ऐसे प्रप्त आँकड़ों से निम्नलिखित प्रश्नों के उत्तर ढूँढ़ पाना कठिन व्यापार है ।
(i) सबसे लंबी पोशाक की माप (से.मी.में) कितनी है ?
(ii) सबसे छोटी पोशाक की माप (से.मी.में) कितनी है ?

मेरी इन उत्तरों को जानने के लिए तैयार हुई । ऊपर के आँकड़ों को उसने ऐसे क्रमबद्ध किया ।

सारणी - 2

$148,148,148,148,148,149,149,149,149,149,149,150,150,150,150,150,150$, $150,150,151,151,151,151,152,152,152,152,152,152,152$

अब ऊपर के दोनों प्रश्नों के उत्तर पाना आसान हो गया ।
बताओ : सबसे लंबी पोशाक और सबसे छोटी पोशाक की माप कितनी-कितनी होगी ?
तुम बताओगे कि सबसे लंबी पोशाक की माप 152 से.मी, है और सबसे छोटी पोशाक की माप 148 से.मी है ।

यदि प्राप्त आँकड़ों की संख्या अधिक हो, तब उपर्युक्त विधि में लिखना आसान नहीं है। फिर कक्षा शिक्षक को और से प्रश्नों के उत्तर पाने में दिक्कत हुई । वे प्रश्न हैं :
(i) 148 से.मी. माप की कितनी पोशाकें चाहिए ?
(ii) 149 से.मी. माप की कितनी पोशाकें चाहिए ?

अब मोहन ने आँकड़ों का संगठन इस प्रकार किया :
सारणी-3

ऊँचाई (से.मी.में)	छात्र संख्या
148	5
149	6
150	8
151	4
152	7

अब सभी छात्र खुश हुए। ऊपर के प्रश्नों के उत्तर देना आसान हो गया ।
सारणी- 3 से मालूम हुआ कि कक्षा में 148 से.मी. ऊँचाई वाले 5 छात्र है, 149 से.मी. ऊँचाई वाले, 150 से.मी. ऊँचाई वाले, 151 से.मी. ऊँचाई वाले और 152 से.मी. ऊँचाई वाले छात्रों की संख्यां क्रमशः 6,8 , 4 और 7 है।

यहाँ $148,149,150,151$ और 152 अंकों को लब्धांक (Score) कहते हैं । आँकड़ो से प्राप्त छात्र-संख्या को उस लब्धांक की बारंबारता (Frequecy) कहते हैं ।

यहाँ 148 लंब्धांक की बारंबारता 5 है। उसी प्रकार $149,150,151$ और 152 लब्धांकों की बारंबारता क्रमश: $6,4,8$ और 7 होगी।

बताओ : सर्वाधिक बारंबारता वाले और सर्वनिम्न बारंबारता वाले लब्धांक कौन-कौन से हैं ?
सारणी 3 पर ध्यान देने से हमें ज्ञात होगा कि सर्वाधिक बारंबारतावाला लब्धांक और सर्वनिम्न लब्धांक वाला लब्धांक क्रमशः 152 से.मी. और 151 से.मी है । आँकड़ों का संगठन करने के लिए निम्न चरण याद रखो ।

- पहले प्राप्त आँकड़ों को अरोही या अवरोही क्रम से लिखो ।
- यदि अधिक संख्या में लब्धांक हैं, उन्हें आरोही या अवरोही क्रम से लिखने में अधिक समय लगता है । इसलिए प्रत्येक लब्धांक आँकड़े में कितनी बार आया है, उसे हिसाब करके लब्धांक की बारंबारता क निरूपण किया जाता है ।
- लब्धांक के साथ बारंबारता को लेकर एक सारणी प्रस्तुत की जाती है। इसे बारंबारता बंटन सारणी (Frequency- distribution Table) कहते हैं ।

खुद करो :

(a) नीचे दिए गए लब्धांकों को आरोही क्रम में व्यवस्थित करो :

$$
\begin{aligned}
& 74,62,64,72,67,73,80,78,65,69,73,84,83,73,93, \\
& 72,62,79,88,79,61,53,87,56,87,81,42,70,45,66
\end{aligned}
$$

(b) उक्त लब्धाकों को लेकर एक बारंबारता-वितरण-सारणी प्रस्तुत करो ।
(c) सारणी को देखकर निम्न प्रश्नों के उत्तर दो ।
(i) सर्वनिम्न लब्धांक कितना है ?
(ii) सर्वनिम्न लब्धांक कितना है ?
(iii) निम्न लब्धांक की बारंबारता सर्बाधिक है ?
(iv) किस लब्धांक की बारंबारता सर्वनिम्न है ?
(v) लब्धांकों की कुल संख्या कितनी है ?

10.4 आँकड़ो का निरूपण (Presentation of Data) :

अब तक हमने आँकड़ों के संग्रह और उनकी वर्गीकरण पर चर्चा की । पर इनसे सारे प्रश्नों के उत्तर पाना संभव नहीं है । इसलिए हमें आँकड़ों का सफल निरूपण करना चाहिए। सामान्यतया हम आँकड़ों को ग्राफ या चित्रालेख के माध्यम से व्यक्त करने से उत्तर पाना आसान होगा और वे समय में आएँगे ।

तीन प्रकार के चित्रालेखों के माध्यम से आँकड़ों का निरूपण किया जा सकता है । वे हैं-
(i) चित्रालेख (Pictograph / Picture graph)
(ii) स्तंभ-लेख (Bar graph) और
(iii) वृत्त-लेख (Circle graph / Pie chart)

10.4.1 चित्रालेख (Pictograph) :

संगृहीत आँकड़ों कों संकेत / चित्र के माध्यम से व्यक्त करने को चित्रालेख कहते हैं । सारणी -3 आँकड़ों को अब चित्र के माध्यम से व्यक्त करेंगे ।

ऊँचाई (से.मी. में)	छात्र संख्या							
148	-	()	()	()	()			
149	()	()	()	()	()	()		
150	()	()	()	()	()	()	()	-
151	()	()	()	()				
152	()	()	()	()	©	()	()	

आकृति (10.1)
यहाँ एक) आवृति छात्र को दर्शाया है ।

उस चित्रालेख को निम्न प्रकार से भी निरूपित किया जा सकेगा :

		\odot		
		\odot		\odot
	\odot	\odot		\odot
\odot	\odot	\odot		\odot
\odot	\odot	\odot	\odot	\odot
\odot	\odot	\odot	\odot	\odot
\odot	\odot	\odot	\odot	\odot
\odot	\odot	\odot	\odot	\odot
148	149	150	151	152

छात्रसंख्या

आकृति - (10.2)
ऊँचाई से.मी.में

एक दूसरी परिस्थिति को चर्चा के परिसर में लाएँ :
कक्षा शिक्षक ने 115 छात्रों से उनके प्रिय फलों के बारे में जानना चाहा तो छात्रों ने निम्न प्रकार से बताया :
सारणी - 4

केला	संतरा	आम	सेव	लीचू
10	25	35	30	15

उसके बाद छात्रों से कहा गया कि वे उपर्युक्त आँकड़ों को लेकर एक चित्रालेख बनाएँ । निहार ने कहा, '"गुरुजी ! 35 फलों के लिए चित्र बनाने के लिए एक बड़े आकार के कागज की जरूरत पड़ेगी । मैं कैसे इसे बना सकूँगा ?"

रहीम ने कहा, "गुरुजी, मुझे एक उपाय सूझता है । यदि प्रत्येक प्रकार के फल के लिए एक चित्र 5 की संख्या को प्रदर्शित करेगा, तब हमें चित्रालेख बनाने के लिए एक बड़े कागज की जरूरत नहीं पड़ेगी । यह बात गुरुजी को सही जँची। उसी के अनुसार चित्रालेख प्रस्तुत किया गया ।

निम्न चित्रालेख को देखो :

केगला	\square	\square						\square पाँच केले
संतरा	\triangle	\triangle	\triangle	\triangle	\triangle			\triangle पाँच संतरे
आम	O	O	\bigcirc	O	O	O	\bigcirc	O पाँच आम
सेव	-	-	\bigcirc	\bullet	-	\bigcirc		- पाँच सेव
लीचू	\square	\square	\square					\square पाँच लीचू

छात्रसंख्या आकृति (10.3)

हम निम्न चित्रालेख को देखकर कुछ प्रश्नों के उत्तर पाने की कोशिश करेंगे :
यहाँ Δ चित्र चार छात्राओं को दर्शाता है ।

आकृति -10.4

(a) किस कक्षा में छात्राओं की संख्या सर्वाधिक है ? उस कक्षा में कुल कितनी छात्राएँ हैं ?
(b) सबसे कम छात्राएँ किस कक्षा में हैं ?
(c) आठवीं कक्षा में कितनी छात्राएँ पढ़ती हैं ?
(d) सातवीं और दसवीं कक्षाओं की छात्राओं का अनुपात कितना है ?

हल :
(a) पहले प्रश्न का उत्तर देने के लिए सलीम ने कहा-छठी कक्षा में चित्रों की संख्या सबसे अधिक है । प्रत्येक चित्र चार छात्राओं को दर्शाता है । इसलिए छठी कक्षा की छात्राओं की कुल संख्या $4 \times 4=16$ है ।
(b) दूसरे प्रश्न का उत्तर जाकोब ने दिया-

दसवीं कक्षा में दो पूर्ण चित्र और एक अधूरा चित्र है । अर्थात् छात्राओं की संख्या होगी $4+4+1=9$ दूसरी कक्षाओं की तुलना में उस कक्षा में सबसे कम् छात्राएँ हैं।
(c) नेहा ने तीसरे प्रश्न का उत्तर दिया । आठवीं कक्षा में दो पूर्ण चित्र और एक अधूरा चित्र है । अर्थात् उस कक्षा में छात्राएँ हैं $=4+4+3=11$ छात्राएँ ।
(d) चौथे प्रश्न के उत्तर में रोहन के कहा :

सातवीं कक्षा की छात्राओं की संख्या $=3 \times 4=12$ छात्राएँ ।
दसवीं कक्षा की छात्राओं की संख्या $=2 \times 4+1=9$ छात्राएँ ।
अतएव सातवीं और दसवीं कक्षा की छात्राओं का अनुपात $=12: 9 \Rightarrow 4: 3$ है ।

10.4.2 दंड आलेख (Bar graph) :

चित्रालेख वे लिए विभिन्र चित्रों को बनाने में अधिक समय लगता है । चित्रों की संख्या अधिक हो जाने से अधिक समय लगता है । इसलिए दंडआलेख वे माध्यम से आँकडों का निरूपण का अनुशीलन और व्याख्या आसान होगा । दंड-आलेख में स्तंभों वे बीच फासला बराबर रहता है । स्तंभ बराबर चौड़ाइवाले होते हैं ।

दंड-आलेख एक-एक संख्यात्मक आँकड़े को लेकर दर्शाया जाता है। इसकी ऊँचाई आँकड़ों की बारंबारिता पर निर्भर है । दंड-आलेख को क्षैतिज (Horizontal) और लंबवत् (Vertical) के रूप में बनाया जा सकता है।

अब एक उदाहरण के माध्यम से दंड-आलेख बनाना सीखेंगे ।
उदाहरण 1 : निम्न सारणी में दिए गए आँकड़ो को लेकर दंड-आलेख बनाओ।

$$
\text { सारणी - } 5
$$

विभिन्न प्रकार की कारें	Santro	Alto	Zen	Fiat	Skoda
कारों की संख्या	10	8	7	3	4

आकृति (10.5)

विभिन्न प्रकार की कारें
दंड-आलेख के चरणों का अनुसरण करते हुए खद दंड-आलेख बनाने कोशिश करो :

- पहले एक ग्राफ पेपर लो । दो रेखाओं को एक दूसरे पर लंबवत् खींचिए, जिसमें एक क्षैतिज रेखा दूसरे लंबवत् रेखा को ' O ' स्थान पर प्रतिच्छेद करे ।
- क्षैतिज रेखा के नीचे मोटर कारों के नाम और लंबवत रेखा के बाईं तरफ कारों की संख्या को एक निश्चित् मान के आधार पर लिखो ।
- क्षैतिज रेखा पर बराबर चौड़ाई वाले दंड और दो दंडो के बीच बराबर दूरी रखकर मान का निर्धारण करो । उसमें विभिन्न कारों को दर्शाओ । लंबवत् रेखा पर हर पाँच या दस छोटे खानों को एक इकाई मानकर कारों की संख्या दर्शाओ। (आवश्यकता के अनुसार खुद मान का निर्धारण कर सकते हो ।)
- उसके बाद दंड-आलेख बनाओ ।

सूचना : ग्राफ पेपर की सहायता के बिना भी सही मानवाले दंड-आलेख बनाए जा सकते हैं।
अब हम नीचे की सारणी के आँकड़ों के आधार पर एक क्षैतिज दंड-आलेख बताएँ।
उदाहरण 2:1998 से 2002 तक वर्षा में भारत-सरकार ने खुले बाजार से गेहूँ खरीदा था। (हजार टन में) । इसे नीचे की सारणी में दर्शाया गया था ।

सारणी - 6

गेहूँ का परिमाण (हजार टन में)	15	25	20	20	30
वर्ष (समय)	1998	1999	2000	2001	2002

पहले के उदाहरण में दिए गए चरणों का अनुसरण करके हम क्षैतिज दंड-आलेख बनाएँगे।

खुद करो : सारणी 6 में दिए गए आँकड़ों को लेकर लंबवत् दंड-आलेख बनाओ ।

उदाहरण - 3 : कक्षा -शिक्षक ने पाँच छात्रों की त्रैमासिक और अर्धवार्षिक परीक्षा में गणित विषय में प्राप्त अंकों का रिकार्ड़ तैयार करके उनकी उत्नति या अवनति पर प्रकाश डाला था । सारणी - 7

छात्र	अरुण	मोहन	निहार	संतोष	सुमित
त्रैमासिक परीक्षा	10	15	12	20	09
अर्धवार्षिक परीक्षा	15	18	16	24	15

कक्षा-शिक्षक ने प्रत्येक छात्र के लिए दो पास-पास वाले दंड-आलेख बनाकर दो परीओओं में उनकी उन्नति/ अवनति पर गौर किया था ।

याद रखो : दो दंडों को पास-पास रखकर आँकड़ों के निरूपण को द्वि-दंड-आलेख(Double Bar graph) कहते हैं ।

खुद करो : एक छात्र को 2008-09 और 2009-10 दो शिक्षा सत्रों में विभिन्न विषयों में जो-जो अंक मिले थे, उसे सारणी में दर्शाया गया है । इसके आधार पर द्वि-दंड आलेख बताओ :

$$
\text { सारणी - } 8
$$

विषय		ओड़िआ	गणित	विज्ञान	सामाजिक विज्ञान	अंग्रेजी
प्राप्त अंक	$2008-09$	55	30	50	35	50
	$2009-10$	40	60	55	50	30

10.4.3 वृत्त-आलेख या पाईचार्ट (Circle graph / pie chart) :

निहार जब सातवीं कक्षा में गाँव के विद्यालय में पढ़ता था, उसने देखा कि वहाँ दीवार पर एक वृत्त के भीतर हमारे प्रांत के सभी जिलों को दर्शाया गया था। चित्रालेख और दंड-आलेख जानने के बाद अचानक उसने कहा कि एक वृत्त के भीतर जैसे विद्यालय की दीवार पर जिले दर्शाऐ गए थे, उसी प्रकार हम भी आँकड़ों को निरूपित कर सकेंगे । कक्षा शिक्षक को निहार की बात पसंद आई । उन्होंने रमेश को बुलाकर पूछा : तुम एक दिवस (24 घंटे) का समय कैससे काटते हो, रमेश ने जो कुछ बताया, उस शिक्षक ने निम्न सारणी में लिखते गए।

> सारणी -9

दैनिक कार्य का विवरण	विद्यालय में उपस्थिति	नित्यकर्म	खेल	आराम	घर पर पढ़ाई	अन्य कार्य
समय (घंटे में)	6	1	2	8	4	3

निहार के कहने के अनुसार शिक्षक ने एक वृत्त बनाया और दिए गए आँकड़ों को वृत्त में निरूपित किया ।

एक वृत्त के भीतर प्रत्येक कार्य संबंधी आँकड़ा निरूपित किया गया है। इसे वृत्त-आलेख कहते हैं। वृत्त-आलेख केवल पूर्ण भाग के साथ दिए गए प्रत्येक भाग के संबंध को लेकर दर्शाया गया है। अर्थात् दैनिक आराम करने का समय (8 घंटे) 24 घंटे की एक तिहाई है। विद्यालय में पढ़ने के समय (6 घंटे), 24 घंटे की एक चौथाई है। घर पर पढ़ाई करने का समय 4 घंटे हैं, जो 24 घंटो का छठवाँ भाग है। खेल के लिए दिए गए समय (2 घंटे) को 24 घंटे का $\frac{1}{12}$ भाग, अन्य कार्यों के लिए समय 3 घंटे को 24 घंटे का $\frac{1}{8}$ भाग माना जाता है । यहाँ वृत्त को छह त्रिज्यखंड़ो में विभाजित किया गया है । त्रिज्यखंडों द्वारा धिरे भाग का परिमाण रमेश के दैनिक-कार्य के परिमाण के साथ समानुपाती हैं। निम्न विश्लेषण देखो :
(a) विद्यालय के लिए दर्शाया गया भाग $=\frac{6 \text { घंटे }}{24 \text { घंटे }}=\frac{1}{4}$
(b) नित्यकर्म के लिए दर्शाया गया भाग $=\frac{1 \text { घंटे }}{24 \text { घंटे }}=\frac{1}{24}$
(c) खेल के लिए दर्शाया गया भाग $=\frac{2 \text { घंटे }}{24 \text { घंटे }}=\frac{1}{12}$
(d) आराम के लिए दर्शाया गया भाग $=\frac{8 \text { घंटे }}{24 \text { घंटे }}=\frac{1}{3}$
(e) घर पर पढ़ाई के लिए दर्शाया गया भाग $=\frac{4 \text { घंटे }}{24 \text { घंटे }}=\frac{1}{6}$
(f) अन्य कार्यों के लिए दर्शाया गया भाग $=\frac{3 \text { घंटे }}{24 \text { घंटे }}=\frac{1}{8}$

याद रखो :

- वृत्त के किन्हीं दो त्रिज्याओं और उसके चाप के लिए बनी आकृति को त्रिज्यखंड कहते हैं।
- ठबगल की आकृति में OACB एक त्रिज्यखंड है ।
- त्रिज्यखंड के चाप की अंश-माप 360° का एक भिन्न हैं।

- वृत्त के सभी त्रिज्य खंड के चाप की अंश-माप का योगफल 360° है ।

मोहित ने शिक्षक से पूछा, वे कैसे छह त्रिज्यखंड बना सके ? शिक्षक ने समझाया, "यदि हम त्रिज्यखंड के केंद्रीय कोण की माप ज्ञात कर सकेंगे, तब आसानी से त्रिज्यखंडो को प्राप्त कर सकेंगे। आओ, देखें, हमें कैसे त्रिज्यखंडो के केन्द्रीय कोणों की माप ज्ञात होगी ?

निम्न सारणी को ध्यान से देखो :
सारणी - श्व10

एकदिन में रमेश के कार्य	समय (घंटे में)	आनुपातिक भाग	360° का आनुपातिक भाग (डिग्री में)
आराम	8	$\frac{8}{24}=\frac{1}{3}$	360° का $\frac{1}{3}=120^{\circ}$
नित्यकर्म	1	$\frac{1}{24}$	360° का $\frac{1}{24}=15^{0}$
विद्यालय के उपस्थान	6	$\frac{6}{24}=\frac{1}{4}$	360° का $\frac{1}{4}=90^{\circ}$
घर पर पढ़ाई	4	$\frac{4}{24}=\frac{1}{6}$	360° का $\frac{1}{6}=60^{\circ}$
खेल	2	$\frac{2}{24}=\frac{1}{12}$	360° का $\frac{1}{12}=30^{\circ}$
अन्य कार्य	3	$\frac{3}{24}=\frac{1}{8}$	$360^{\circ} \frac{1}{8}=45^{0}$
वुल़	24 घंटे		कोणों की माप का योगफल $=360^{\circ}$

शिक्षक ने मोहित को बुलाकर वृत्त-आलेख के सभी चरणों को समझा दिया ।

चरण :

- एक निश्चित त्रिज्यावाला वृत्त खींचो ।
- वृत्त के केनन्द्र में प्रत्येक कार्य/सूचना के मुताबिक आवश्यक त्रिज्यखंडों के केन्द्रीय कोणों की माप ज्ञात करो।
- चाँद की सहायता से केन्द्र में कोणों को खींचकर त्रिज्यखंडों को कार्य/सूचना के मुताविक दर्शाओ । खुद करो : एक छात्रावास में रहने वाले विद्यार्थियों के द्वारा बोली जानवाली भाषाओं को एक सारणी में दर्शाया गया है । इन आँकड़ो के आधार पर एक वृत्त-आलेख बनाओ ।

$$
\text { सारणी - } 11
$$

भाषा	ओड़िआ	हिन्दी	अंग्रेजी	संस्वृत
छात्रसंख्या	18	9	6	3

10.5 समूह बनाकर बारंबारता का बंटन (Groupped Frequency Distribution) :

माना कि एक कक्षा में 30 विद्यार्थि गणित विषय पर परीक्षा देते हैं । पूर्णांक 50 से उन्हें अंक प्राप्त हुए :
$19,14,10,12,24,29,34,10,14,12,19,24,38,34,24$,
$5,7,19,12,14,24,19,38,22,29,24,19,19,14,25$
ऊपर के आँकड़ो को लेकर पूर्व अनुच्छेद 10.3 का अनुसरण करते हुए बारंबारता बंटन सारणी प्रस्तुत करने से वह इस प्रकार होगी :

सारणी โ 12

लब्धांक (Score)	बारंबारता (Frequency)
5	1
7	1
10	2
12	3
14	4
19	6
22	1
24	5
25	1
29	2
34	2
38	2

यहाँ विद्यार्थियों की संख्या बहुत अधिक होती और पूर्णांक 50 न होकर 100 होता तो सारणी लंबी हो जाती । ऐसे स्थल में उन आँकड़ो को सारणी में प्रस्तुत करना ऊबाऊ प्रतीत होता । ऐसी सारणी से एक निश्चित सूचना प्राप्त करना भी कठिन होता ।

ऐसी स्थिति में प्रत्येक लब्धांक के लिए बारंबारता ज्ञात न करके लब्धांकों को कुछ समूहों / बर्गों (Class or Group) में बाँटकर प्रत्येक समूह के लिए बारंबारता ज्ञात की जाती है । इस प्रक्रिया को आँकड़ों का बारंबारता ज्ञात की जाती है । इस प्रक्रिया को ऑठकड़ों बारंबारता बंटन सारणी या वर्गीकृत बारंबारता बंटन कहते हैं। अब दी गई सारणी के लब्धांकों के कुछ समूहों में बाँटेंगे । यहाँ उच्च वर्ग-सीमा और निम्न वर्ग-सीमा क्रमश: 38 और 5 है । दोनों को अंतर को वर्ग-अंतरालों की माप कहते हैं।

आँकड़ों के उच्च वर्ग सीमा और निम्न वर्ग सीमा के अंतर को वर्ग-माप कहते हैं ।

सामान्यतया आँकड़ों का विस्तार/वर्ग-माप अधिक होने पर आँकड़ों को विभित्न समूह में बाँटा जाता है । दिए गए आँकड़ों का समूहकरण /वर्गीकरण निम्न प्रकार से है :

$$
0-10,10-20,20-30,30-40
$$

यहाँ सभी आँकड़ो को 4 भागों में बाँटा गया है । प्रत्येक समूह को एक-एक वर्ग अंतराल (Class-interval) कहते हैं। निम्न सारणी देखो :

सारणी - 13

वर्ग अंतराल	$0-10$	$10-20$	$20-30$	$30-40$
बारंबारता	2	15	9	4

यहाँ ध्यान दो कि $(0-10)$ और (10-20) वर्ग-अंतराल द्वय में ' 10 ', दोनों वर्ग अंतराल में है । उसी प्रकार ' 20 ' (10-20) और (20-30) वर्ग अंतराल दोनों में है । इसलिए हम मान लेंगे कि ' 10 ' पहले वर्ग-अंतराल में न रहकर दूसरे वर्ग-अंतराल में है । और ' 20 ' दूसरे वर्ग-अंतराल में न रहकर तीसरे वर्ग-अंतराल में है । ' 30 ' लब्धांक दिए गए चार वर्ग अंतरालों में से $(30-40)$ वर्ग-अंतराल में रहेगा ।

याद रखो :

- 10-20 वर्ग अंतराल के 10 को अंतराल की निम्न वर्गसीमा (Lower Limit) और 20 को वर्ग-अंतराल की उच्च वर्गसीमा (Upper Limit) कहते हैं ।
- उसी प्रकार (20-30) के क्षेत्र में 20 एवं 30 को क्रमशः उसे वर्ग-अंतराल की निम्नवर्ग सीमा और उच्च वर्गसीमा कहते हैं ।
- वर्ग अंतराल की उच्च वर्ग सीमा और निम्न वर्ग-सीमा द्वाय के अंतर को वर्ग-अंतराल की माप कहते हैं ।
$0-5,5-10,10-15$ आदि वर्ग अंतरालों में वर्ग माप 5 है ।
क्योंकि $5-0=10-5=$ \qquad $=5$

उपर्युक्त समूह बने आँकड़ों में से हम कुछ निष्कर्ष पर पहूँच सकेंगे :
(i) 30 विद्यार्थियों में से सर्वाधिक 15 विद्यार्थियों को 10 और 10 से 20 के बीच के अंक मिले हैं ।
(ii) 20 या 20 से अधिक अंक प्राप्त करने वाले विद्यार्थियों की संख्या 13 है ।
(iii) 20 से कम अंक पाने वाले विद्यार्थियों की संख्या 17 है । आदि ।

खुद करो :

1. 20 छात्रों के वजन की समूहों में बँटे बारंबारता बंटन सारणी प्रस्तुत करो जिसका वर्ग -माप 5 हो । आँकड़ों इस प्रकार हैं- $40,38,33,48,60,53,31,46,34,36,49,41,55,49,65,42,44,47,38,39$ 2. नीचे लब्धोंकों(आँकड़ों) को लेकर बारंबारता बंटन सारणी तैयार कीजिए, जिसका वर्ग-अंतराल 10 हो । $21,10,30,22,33,5,37,12,25,42,15,39,26,32,18,27,28,19,29,35,31,24,36$, $18,20,38,22,44,16,24,10,27,39,28,49,29,32,23,31,21,34,22,23,36,24,36,33$, $47,48,50,39,20,7,16,36,45,47,30,22,17$

उदाहरण 4 : निम्न समूह में बँटे आँकड़ों को देखकर प्रश्नों के उत्तर दो ।
एक कारखाने के 550 कर्मचारियों की आय को समूहों में बँटे बारंबारता बंटन सारणी में दर्शाया गया है ।
सारणी - 14

समूह	बारंबारता
$100-125$	45
$125-150$	25
$150-175$	55
$175-200$	125
$200-225$	140
$225-250$	53
$250-275$	35
$275-300$	50
$300-325$	20

(i) दिए गए समूहों का वर्ग-अंतराल कितना है ?
(ii) किस समूह की बारंबारता सर्वाधिक है ?
(iii) किस समूह की बारंबारता सर्वनिम्न है ?
(iv) (200-275) समूह की उच्च वर्ग-सीमा कितनी है ?
(v) किन दो समूहों की बारंबारता बराबर है ?
(vi) 150 रुपए से कम आय करने वाले कर्मचारियों की संख्या कितनी है ?

कुल कर्मचारियों की संख्या $=550$
हल : (i) वर्ग अंतराल (25) ।
(ii) (200-225) समूह को बारंबारता सर्वाधिक है (140) ।
(iii) (300-325) समूह की बारंबारता सर्वनिम्न है (20)।
(iv) (200-275) समूहों की उच्च वर्ग सीमा 275 है ।
(v) $(150-175)$ और $(225-250)$ समूह दोनों की बारंबारता बराबर है (55) ।
(vi) $45+25=70$ व्यक्तियों की आय 150 रुपए से कम है ।

10.6 हिस्टोग्राम (Histogram) :

समूह में बँटे बारंबारता बंटन को लिखाचित्र के माध्यम से व्यक्त किया जा सकता है । 10.4.2 विभाग में दंड-आलेख द्वारा कैसे आँकड़ों दर्शाए जाते हैं, वह तुम्हें ज्ञात है । दंड-आलेख में दंडों का विस्तार (चौड़ाई) बराबर था । दंडों में दूरी भी बराबर थी । हिस्टोग्राम बनाते समय भी अनुरूप दंड-आलेख बनाया जाता है । लकिन उनमें दूरी नहीं रहती । हिस्टोग्राम में दंड की चौड़ाई वर्ग अंतराल पर निर्भर रहता है । दंड की ऊँचाई अनुरूप समूह की बारंबारता होती है । समूहों में कोइ दूरी न रहने से दंड खीचते समय कोई दूरी नहीं रहती । यहाँ ध्यान देना चाहिए कि प्रत्येक हिस्टोग्राम भी एक-एक दंड-आलेख है ।

लब्धांको के समूह-करण व्यवस्था में खींचे गए दंड-आलेख को हिस्टोग्राम कहते हैं । दूसरे शब्दों में कह सकते हैं कि समूहों में बंटे आँकड़ों के दंड-आलेख का हिस्टोग्राम कहते हैं ।

उदाहरण 5: हम दी गई समूहों में बँटो बारंबारता बंटन-सारणी को लेकर एक हिस्टोग्राम बनाएँगे ।
सारणी - $\mathbf{1 5}$

समूह	बारंबारता
$0-10$	5
$10-20$	10
$20-30$	21
$30-40$	19
$40-50$	7
$50-60$	3

बनाए गए चित्र को हिस्टोग्राम कहते हैं। दंड-आलाख बनाने के चरणों का अनुसरण करते हुए उक्त हिस्टोग्राम बनाया गया है।

उदाहरण - 6

निम्न हिस्टोग्राम एक कराखाने के 80 मजदूरों की दैनिक मजदूरी से संबंधित है । यह समूहों में बँटे आँकड़ों के आधार पर बना है।

हिस्टोग्राम के देखकर निम्न प्रश्नों के उत्तर दो :
(i) सर्वाधिक मजदूरी दर्शानेवाले समूह में व्यक्तियों की संख्या कितनी है ?
(ii) किस समूह में सर्वाधिक संख्या में लोग हैं ?
(iii) दिए गए समूहों का वर्ग-अंतराल कितना है ?
(iv) कितने आदमी ₹ 330 से कम मजदूरी पाते हैं ?
(v) ₹ 340 या इससे अधिक मजदूरी पाने वाले मजदूरों का संख्या कितनी है ?

हल :
(i) (350-360) समूह की बारंबारता 2 है । अतएव अधिक मजदूरी पाने वाले आदमीयों की संख्या 2 है ।
(ii) $(320-330)$ (iii) 10
(iv) ₹ 330 से कम मजदूरी पाने वाले मजदूरों की संख्या $=12+18+28=58$ है ।
(v) ₹ 340 या उससे अधिक मजदूरी पाने वाले मजदूरों की संख्या $=5+2=7$ है ।

खुद करो :

1. तुम्हारे विद्यालय के 25 शिक्षकों की उम्र नीचे समूहों में बाँटे गए बारंबारता बंटन सारणी में दर्शाया गया है । इसका व्यवहार करके हिस्टोग्राम बनाओ ।

| समूह | $20-25$ | $25-30$ | $30-35$ | $35-40$ | $40-45$ | $45-50$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| बारंबारता | 4 | 5 | 6 | 3 | 2 | 5 |

2. दिए गऐ हिस्टोग्राम को देखकर निम्न प्रश्नों के उत्तर दो :

(ऊँचाई से.मी.में) \rightarrow
आकृति $\mathbf{1 0 . 1 2}$
(i) इस हिस्टोग्राम से क्या सूचना मिलती है ?
(ii) किस समूह में सर्वाधिक छात्राएँ हैं ?
(iii) 145 से.मी. और उससे अधिक ऊँचाई वाली छात्राओं की संख्या कितनी है ?
(iv) 140 से.मी. से कम ऊँचाई वाली छात्राओं की संख्या कितनी है ?
(v) 140 से.मी. और 145 से.मी. के बीच की ऊँचाई की छात्राओं की संख्या कितनी है ?

अभ्यास 10 (a)

1. एक डॉक्टर के द्वारा हफ्ते के भिन्न-भिन्न दिन में जाँचे गए मरीजों की संख्या एक सारणी में दर्शाया गया है । इन आँकड़ों के आधार पर एक दंड-आलेख बनाओ ।

सारणी - 17

दिवस	सोम	मङ्गल	बुध	गुरु	शुक्र	शनि
मरीजों की संख्या	16	20	26	13	25	28

2. एम व्यक्ति का मासिक वेतन ₹ 7200 है । वे निम्न प्रकार से खर्च करना चाहते हैं । आँकड़े सारणी में दिए गए हैं। आँकड़ो का व्यवहार करके एक दंड आलेख बनाओ ।

घर का खर्च	दवाई	बच्चों का शुल्क	यातयात	स्कूटर मरम्मत
3200	400	800	1600	1200

3. किसी गाँव के बच्चे-बच्चियाँ भिन्न-भिन्न साधनों से स्कूल जाते हैं। यहाँ बच्चे और बच्चियों की संख्या सारणी में दी गई । इन आँकड़ो का व्यवहार करके एक -द्वि-दंड ओलख बनाओ ।
सारणी -18

साधन	स्कूल बस	पैदल	साइकिल	अन्य
बच्चे	75	120	240	150
बच्चियाँ	135	60	180	90

4. बगल में दंड-आलेख द्वारा एक शहर के विभिन्न समय का तापमान दर्शाया गया है । आलेख को देखकर निम्न प्रश्नों के उत्तर दो ।
(a) दिन के किस समय तापमान सर्वाधिक था ?
(b) दिन के किस समय तापमान सर्वनिम्न था ?
(c) $45^{\circ} \mathrm{C}$ तापमान किस समय था ?
(d) सर्वाधिक तापमान और सर्वनिम्न तापमान में अंतर कितना है ?
(e) अपराहण एक बजे का तापमान कितना था ?

5. निम्न बारंबारता बंटन सारणी को देखकर निम्न प्रश्नों के उत्तर दो । उक्त सारणी में 40 व्यक्तिओं का वजन (कि.ग्रा. में) दशार्या गया है ।

$$
\text { सारणी - } 19
$$

वजन(कि.ग्रा. में)	$40-48$	$45-50$	$50-55$	$55-60$	$60-65$
व्यक्तियों की संख्या	4	12	13	6	5

(a) पहले समूह की निम्न वर्ग सीमा और उच्च वर्ग सीमा कितनी-कितनी हैं ?
(b) किस समूह में सर्वाधिक व्यक्ति हैं ?
(c) 50 कि.ग्रा. से कम वजन के व्यक्तिओं की संख्या कितनी है ?
(d) किस समूह में व्यक्तियों की संख्या सबसे कम है ?
(e) इन समूहों में आँकड़ो का वर्ग-अंतरल कितना है ?
6. दिए गए आँकड़ो का उपयोग करके एक हिस्टोग्राम बनाओ । यहाँ सारणी में 25 छात्रों के अंको की सूची दी गई है ।

$$
\text { सारणी - } 20
$$

समूह	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
छात्रसंख्या (बारंबारता)	1	4	6	8	4	2

7. एक स्वूल की vii से x कक्षा तक के छात्रों की संख्या 720 हैं। बगल के वृत्त-आलेख को देखकर निम्न प्रश्नों के उत्तर दो।
(a) कक्षा x की छात्रसंख्या कितनी है ?
(b) कक्षा x की छात्र-संख्या कक्षा viii की छात्र-संख्या से कितनी कम है ?
(c) कक्षा ix और कक्षा x की छात्र-संख्या का अनुपात कितना है ?
(d) कक्षा vii की छात्र-संख्या कक्षा x छात्र-संख्या से कितनी अधिक है ?

आकृति (10.14)
8. कुल 1080 व्यक्तियों की खाद्य-रुचि को ध्यान में रखकर एक वृत्त-आलेख बनाया गया है। बगल के वृत्त-आलेख को देखकर निम्न प्रश्नों के उत्तर दो :
(a) कितने व्यक्ति पराँठे और कितने व्यक्ति रोटी पसंद करते हैं ?
(b) कितने व्यक्ति चाओमिन और पिजा को पसंद करते हैं ?
(c) कितने व्यक्ति दोसा के अपेक्षा रोटी को अधिक पसंद करते हैं ?
(d) पराँठे को पसंद करने वाले व्यक्तियों की संख्या पिजा को पसंद करते वाले व्यक्तियों से कितनी अधिक है ?

आकृति (10.15)
9. एक विद्यालय में निम्नलिखित भाषाओं को प्रथम भाषा के रूप में पढ़ने वाले छात्रों की संख्या दी गई है। उन आँकड़ो का उपयोग करके एक वृत्त-आलेख बनाओ

सारणी - 21

भाषा	अंग्रेजी	हिन्दी	ओड़िआ	बंगला	तेलुगु
छात्र-संख्या	50	20	80	18	12

10. सारणी में दिए गए आँकड़ों का उपयोग वरके एक हिस्टोग्राम बनाओ ।

सारणी - 22

समूह	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
बारंबारता	5	10	19	24	18	6

11. 40 घरों के बिजली बिल आए हैं। बिल में देय रुपए भी दर्शाया गए हैं। उन आँकड़ों के आधार पर समूहों में बंटे बारंबारता-बंटन की सारणी बनाओ । (समूह का वर्ग-अंतराल 10 हो ।) (आवश्यकता पड़ने पर टाली चिह्न का व्यवहार किया जा सकता है ।)
$78,87,81,52,59,65,101,108,115,95,98,65,62,121,128,63,76,84,89,91,65$, $101,95,81,87,105,129,92,75,105,78,72,107,116,127,100,80,82,61,118$
12. दिए गए आँकड़ो में $0-5,5-10, \ldots \ldots \ldots$. समूहों को रखकर एक बारंबारता बंटन-सारणी बनाओ । फिर इसका उपयोग करके एक हिस्टोग्राम बनाओ ।
$13,6,12,9,11,14,28,18,16,9,13,17,11,19$,
$6,7,12,22,21,18,1,8,12,18,13,5,10,12,4$

10.7 ग्राफों का परिचय (Introduction to Graphs) :

सामान्यतया आँकड़ो को विभिन्न ग्राफों (चित्रालेखों) के माध्यम से दर्शाया जाता है। संगृहीत आँकड़ों को चित्रालेख के माध्यम से पर्यवेक्षकों का ध्यान आकर्षित करने के लिए प्रदर्शित किया जाता है । पहले आँकड़ों को सारणी में लिखा जाता है। आवश्यकता के अनुसार विभिन्न आलेखों के माध्यम से प्रस्तुत किया जाता है।। आँकड़ों की तुलना करना भी संभव होता है ।

तुम पहले से चित्रालेख, दंड-आलेख और समूहों में आए आँकड़ो के लए प्रयुक्त हिस्टोग्राम के माध्यम से संगृहीत आँकड़ों को कैसे उपस्थापन किया जाता है, जानते हो । अंब दूसरे प्रकार के चित्रालेख के बारे में चर्चा करेंगे।

उदाहरण - 7: रेणु को शरीर का तापमान दिन के हर चार घंटे में थर्मामीटर से मापकर एक सारणी में दर्शाया गया है। आँकड़ों के आधार पर चित्रालेख बनाया गया है ।

$$
\text { सारणी - } 23
$$

समय	6 am	10 am	2 pm	6 pm
तापमान $\left(0^{\circ} \mathrm{C}\right)$	37	40	38	35

याद रखो : क्षैतिज रेखा (समय सूचक) को सामान्यतया X -axis या X अक्ष कहते हैं। ऊर्ध्वाधर अक्ष (तापमान सूचक) को Y -axis या Y अक्ष कहते हैं।
(1) समय के अनुसार निश्चित तापमान के आधार पर आँकड़ों को बिंदुओं द्वारा (P, Q, R, S) चिह्नित किया गया है।
(2) उन बिंदुओं को क्रमशः रेखाखंड $\overline{P Q}, \overline{Q R}, \overline{R S}$ द्वारा जोड़ा गया है ।

इस प्रकार के चित्रालेख को समय-तापमान-रेखा लेख (Time-Temperature Line Graph) कहते हैं। इस चित्रालेख में समय के साथ तापमान का भी परिवर्तन होता रहता है । अब इस रेखा-आलेख से क्याक्या सूचनाएँ मिलती हैं ?

समीर ने कहा : दस बजे सुबह तापमात्रा सर्वाधिक था।
रमेश ने कहा : दस बजे से धीरे-धीरे तापमान घटते-घटते शाम को छह बजे सर्वनिम्न रहा। रेखालेख का दूसरा उदाहरण देखो ।

उदाहरण - 8 : मशीन के पुर्जे बनाने वाली एक संस्था का विभिन्न वर्षों में उत्पाद बेचने से प्राप्त धन का परिमाण (करोड़ में) लेकर एक रेखा-आलेख तैयार किया गया है। रेखालेख को देखकर निम्न प्रश्नों के उत्तर दो ?

(i) 2002 और 2004 में उत्पादों के बेचने से प्राप्त धनराशि का परिमाण कितना था ?
(ii) 2003 और 2005 में उत्पादों के बेचने से प्राप्त धनराशि का परिमाण कितना था ?
(iii) 2002 और 2006 में प्राप्त धनराशि का अंतर कितना था ?
(iv) किन वर्ष संस्था की प्राप्त धनराशि सर्वाधिक थी ?

हल :
(i) 2002 में प्राप्त धनराशि का परिमाण 4 करोड़ था ।

2004 में प्राप्त धनराशि का परिमाण 6 करोड़ था।
(ii) 2003 में प्राप्त धनराशि का परिमाण 7 करोड़ था ।

2006 में प्राप्त धनराशि का परिमाण 8 करोड़ था।
(iii) 2002 और 2006 में प्राप्त धनराशि का अंतर 4 करोड़ था ।
(iv) 2005 में प्राप्त धनराशि का परिमाण सर्वाधिक दस करोड़ था।

10.8 सरलरेखीय चित्रालेख(Linear Graph) :

पूर्वोक्त उदाहरणों दोनों में कई रेखाखंड एक क्रम से जोड़कर एक-एक चित्रालेख बनाए गए हैं। कुछ स्थितियों में चित्रालेख एक सरलरेखा का रूप लेता है। इस प्रकार के चित्रालेख को सरलरेखीय चित्रालेख (Linear Graph) कहते हैं ।

ग्राफ पेपर पर कैसे आसानी से बिंदुओं का आलेखन (Plotting of Points) किया जा सकेगा, उस पर चर्चा करेंगे । बिंदुओं के आलेखन का अर्थ है- ग्राफ पेपर पर बिंदुओं की स्थितिओं को जानना ।

10.8.1 बिंदु का आलेखन(Location of Point) :

शिक्षक ने पढ़ाते समय श्यामपट पर एक बिंदु चक से दर्शाया । उन्होंने पूछा,
"बच्चो ! बताओ, चक से दर्शाया गया बिंदु श्यामपट पर कहाँ है ?"
शिक्षक को भिन्न-भिन्न उत्तर प्राप्त हुए। वे हैं :

बिंदु श्यामपट के ऊपर के आधे-हिस्से में चिन्हित है ।
बिंदु श्यामपट के बाएँ के किनारे की ओर है ।
बिंदु श्यामपट के बाईं ओर के ऊपर के कोने में चिन्हित है ।
क्या इस वर्णन से बिंदु का सही स्थान निरूपित हो सका ? क्यों नहीं हो सका ? सोचो ।
जन अपनी जगह से उठकर श्यामपट के पास आया । उसने श्यामपट के बाईं ओर के किनारे से बिंदु की दूरी स्केल से मापकर ज्ञात किया । उसने कहा, "गुरुजी, ' A ' बिंदु बाई ओर से 90 से.मी. दूरी पर है ।" निम्न आकृति 10.18 को देखो ।

$\cdot \mathrm{A}^{2}$
$\cdot \mathrm{~A}_{1}$
$\cdot \mathrm{~A}_{2}$
$\cdot \mathrm{~A}_{3}$
\cdot
\cdot

90 से.मी.

आकृति 10.18

शिक्षक ने फिर से एक बार छात्रों से पूछा, "बच्चो ! अब बताओ, जन ने जो उत्तर दिया, उससे क्या ' A ' बिंदु की स्थिति को सही रूप से सूचित किया जा सकेगा ? ध्यान दो, श्यामपट के बाईं ओर के किनारे से 90 से.मी. दूरी पर ' A ' जैसे अनेक बिंदु हो सकते हैं।''

संगीत श्यामपट के पास जाकर नीचे के किनारे से ' A ' की दूरी मान ली । उसने जन के उत्तर को स्वीकार करके कहा, "' A ' बिंदु श्याम पट के बाईं ओर के किनारे से 90 से.मी. और नीचे के किनारे से 160 से.मी दूरी पर स्थित है। निम्न आकृति 10.19 देखो ।

	-A
	- A_{1}
160	- A_{2}
से.मी.	- A_{3}
	-
	-
	-

90 से.मी.
आकृति (10.19)
ध्यान दो । अब श्यामपट पर ' A ' बिंदु की वास्तविक स्थिति निरूपित हो सकी । संगीता ने जो उत्तर दिया था, उसे शिक्षक ने संक्षिप्त में इस प्रकार कहा, $\mathrm{A}(90,160)$

अब बताओ, श्यामपट पर B बिंदु की स्थिति को हम कैसे बताएँगे, जब यह बिंदु बाईं ओर से 20 से.मी और नीचे की ओर के किनारे से 100 से.मी. दूरी पर स्थित हो ? तुम्हारा उत्तर होगा- $\mathrm{B}(20,100)$

खुद करो : निम्न बिंदुओं की स्थिति संक्षेप में दर्शाई गई है । उनकी विस्तार से व्याख्या को । (माप की इकाई से.मी. में दी गई है । (a) $\mathrm{M}(16,80) \mathrm{b}(\mathrm{N})(100) 30, \mathrm{C} R(80,80)$

सत्रहवीं सदी में फरासी गणितज्त रेने डेसकार्टे (Rene Descartes) एक बार छत के एक कोने में एक कीड़े की गतिाविधि को देख रहे थे । उन्होंने एक निश्चित समय पर कीड़े की स्थिति जानने की कोशिश की । दो मापों के द्वारा कैวसे एक बिंदु की स्थिति चिह्नित की जा सकेगी,यह जानना उनके आविष्कार से संभव हुआ । दो मापों में से एक क्षैतिज(Horizontal) और दूसरा ऊर्ध्वधिर (Vertical) है । उनके नाम के अनुसार उस बिंदु को चिह्नित करने की विधि को कार्टेजीय विधि(Cartesian System) कहते हैं ।

10.8.2 निर्देशांक अक्ष (Co-ordinate Axes) :

मान लो कि तुम एक प्रेक्षालय में एक निश्चित सीट के पास जाओगे । तुम्हें सही सीट के पास पहुँचने के लिए दो संख्याओं की सहायता लेनी है । जैसे- पंक्ति की संख्या और पंक्ति में सिट की संख्या । ये निर्देशांक हैं । इनकी सहायता से समतल पर बिंदु का आलेखन (Poltting of Point) किया जाता है । हम श्यामपट पर ' A ' बिंदु के आलेखन के लिए दो संख्याओं (निर्देशांकों) की सहायता लेते थे । वे हैं 90 और 160 ।

10.9 समतल पर बिंदु का आलेखन (Plotting of Point on a Plane) :

समतल पर बिंदु का आलेखन करने के लिए पहले ग्राफ पेपर पर बिंदु के आलेखन के उपयों को जानना होगा । ग्राफ पेपर पर कैसे एक बिंदु $\mathrm{P}(3,4)$ का आलेखन किया जाएगा, आओ, देखें ।

तुम पहले के अनुच्छेद से जानते हो कि $P(3,4)$ में से पहली संख्या ' 3 ' मूल बिंदु से दाईं ओर कितनी इकाई जाएगी और दूसरी संख्या ' 4 ' मूल बिंदु से ऊपर की ओर कितनी इकाई जाएगी, यह ज्ञात होता है ।
(आकृति - 10.20)
सूचना : x - अक्ष और y -अक्ष एक एक संख्यारेखाएँ हैं । (नियामक अक्ष हैं ।) ox और oy धनात्मक पूर्णांक लेते हैं ।
x -अक्ष में 3 इकाई मूल बिंदु से दाईं ओर ली गई है । 3 को x निर्देशांक (भुज) (x -Co-ordinate या abscissa) कहते हैं । y -अक्ष में ' 4 ' इकाई मूल बिंदु से ऊपर की ओर ली जाती है । 4 को y -निर्देशांक (y -Coordinate) या कोटि (Ordinate) कहते हैं ।
x - अक्ष पर ' 3 ' और y -अक्ष पर 4 अंकित बिंदुओं पर अंकित सरलरेखा-द्वय का प्रतिच्छेद बिंदु P है । इसे $\mathrm{P}(3,4)$ द्वारा सूचित किया जाता है । यहाँ P बिंदु के निर्देशांक हैं $(3,4)$ ।

अब परिक्षण करके देखो : $(3,4)$ निर्देशांक और $(4,3)$ निर्देशांक वाले दोनों बिंदु क्या एक और अभित्न हैं ?

उदाहरण 9 : बगल के चित्रालेख को देखकर ज्ञात करो कि कौन-कौन से बिंदु दिए गए निर्देशोकों को दर्शाते हैं ? निर्देशांक है : (i) $(2,1)$, (ii) $(0,5)$ (iii) $(2,0)$, (iv) $(3,5)$ । A, H, F और D बिंदुऔं के निर्देशांक लिखो । हल : (i) E बिंदु को दर्शाते हैं $(2,1)$
(ii) B बिंदु को दर्शाते हैं $(0,5)$
(iii) G बिंदु को दर्शाते हैं $(2,0)$ और
(a) A बिंदु के निर्देशांक $(5,4)$
(b) H बिंदु के निर्देशांक $(4,3)$
(c) F बिंदु के निर्देशांक $(6,1)$
(d) D बिंदु के निर्देशांक $(1,2)$ हैं ।
(iv) C बिंदु को दर्शाते हैं $(3,5)$

आकृति 10.21

उदाहरण 10 : ग्फ पेपर पर निम्नलिखित निर्देशांकों के माध्यम से बिंदुओं को दर्शाओ । यदि बिंदु एक सरलरेखा पर रहते हैं, तब सरलरेखा का नाम लिखो ।
(i) $\mathrm{J}(0,2), \mathrm{K}(0,5), \mathrm{L}(0,4), \mathrm{M}(0,6)$
(iv) $\mathrm{S}(2,0), \mathrm{T}(5,0), \mathrm{U}(4,0), \mathrm{V}(6,0)$
(ii) $\mathrm{A}(1,1), \mathrm{B}(1,2), \mathrm{C}(1,3), \mathrm{D}(1,6)$
(v) $\mathrm{P}(2,6), \mathrm{Q}(3,5), \mathrm{R}(5,3), \mathrm{S}(6,2)$
(iii) $\mathrm{K}(1,3), \mathrm{L}(2,3), \mathrm{M}(3,3), \mathrm{N}(4,3)$
(vi) $\mathrm{E}(1,1), \mathrm{F}(2,2), \mathrm{G}(3,3), \mathrm{H}(4,4)$

हल : मान $=$ दोनों अक्षों में प्रत्येक छोटावर्ग $=1$ इकाई ।
(i)

(ii)

बिंदु समूह एक सरलरेखा । बिंदु समूह $\overrightarrow{\mathrm{AD}}$ y - अक्ष पर स्थित हैं । यह सरलरेखा y -अक्ष के साथ समान्तर है ।

आकृति 10.24
बिंदु समूह $\overleftrightarrow{\mathrm{KN}}$ पर स्थित है । यह सरल रेखा x - अक्ष के साथ समांतर है ।

बिंदु समूह एक सरलरेखा x - अक्ष पर स्थित हैं ।

बिंदु समूह $\overleftrightarrow{\mathrm{PS}}$ पर स्थित हैं ।

द्रष्टव्य : (a) बिंदुओं का x निर्दाशांक ' 0 ' हो तो सभी बिंदु y - अक्ष पर होंगे । y अक्ष पर प्रत्येक बिंदु का x निर्देशांक ' 0 ' होगा । (चित्रोलेख (i)
(b) बिंदुओं का y निर्दाशांक ' 0 ' हो तो सभी बिंदु x - अक्ष पर होंगे । x अक्ष पर प्रत्येक बिंदु का y निर्देशांक ' 0 ' होगा । (चित्रोलेख (iv)
(c) बिंदुओं का x निर्दाशांव समान हो (शून्येतर) तो सभी बिंदु y अक्ष वे साथ समान्तर एक सरलरेखा पर होंगे । y अक्ष वे साथ समांतर एक सरलरेखा पर सभी बिंदुओं में x निर्देशांक समान (शून्येतर) होगा । (चित्रोलेख (ii)
(d) बिंदुओं का y निर्दाशांक समान हो (शून्येतर) तो सभी बिंदु x - अक्ष के साथ समांतर एक सरलरेखा पर होंगे और x - अक्ष के साथ समांतर एक सरलरेखा पर स्थित प्रत्येक बिंदु का y निर्देशांक समान (शून्येतर) होगा । (चित्रोलेख (iii)

दर्शाए गए प्रत्येक चित्रालेख एक-एक सरलरेखा हैं । इन्हें सरलरेखीय चित्रालेख (Linear Graph) कहते हैं ।

10.10 कुछ अनुप्रयोग (Application) :

हम अपने दैनिक जीवन में कुछ सामान खरीदते यां बेचते हैं । इसके अलावा जीवन-शैली में बदलाव आने से हम विभिन्न क्षेत्रों में कुछ धन-राशि विनियोग करके विभिन्न सुविधाएँ हासिल करते हैं। उदाहरण के रूप में- घर पर प्रयोग में लाई गई बिजली, कार के लिए पेट्रोल । हम घर पर जितनी बिजली का खर्च करेंगे, उसी के अनुपात से धन देना पड़ेगा । पेट्रोल के खर्च की मात्रा पर खर्च का परिमाण निर्भर करेगा । अर्थात् अधिक पेट्रोल खर्च करने से अधिक धन-राशि देनी पड़ेगी और कम मात्रा का पेट्रोल खर्च करने से कम धनराशि देनी पड़ेगी ।

यहाँ पेट्रोल की मात्रा पर खर्च का परिमाण निर्भर करता है । इसलिए पेट्रोल की मात्र को एक स्वतंत्र चर (Independent Variable) कहते हैं । पेट्रोल के लिए आवश्यक खर्च के परिमाण को आश्रित चर (Dependent Variable) कहते हैं । उन चर-द्वय में जो संपर्क है, उसे चित्रालेख के माध्यम से दर्शाया जा सकता है । उसी प्रकार बिजली शक्ति के खर्च का परिमाण स्वतंत्र चर है । उसके लिए आवश्यक खर्च का परिमाण आश्रित चर है । निम्न उदाहरण के माध्यम से उपर्युक्त चरों में पाए गए संबंध को चित्रोलेख द्वारा व्यक्त किया जा सकता है । उस पर ध्याद दो।

उदाहरण 11 : निम्न सारणी मे मोटर कार के लिए व्यवहृत पेट्रोल और उस पर आने वाले खर्च का परिमाण दर्शाया गया है । इसका व्यवहार करके एक चित्रालेख बनाओ । 12 लीटर पेट्रोल का मूल्य ज्ञात करो।

सारणी-24

पेट्रोल का परिमाण(लीटर में)	5	10	15	20
पेट्रोल के लिए खर्च का परमिण (रुपए में)	250	500	750	1000

हल : चित्रालेख बनाने की सूचना :
(i) ग्राफ पेपर पर अक्ष-द्वय चिन्हित करके आवशकता के अनुसार मान(स्केल) निर्धारित करो ।
(ii) x - अक्ष पर पेट्रोल का परिमाण और y - अक्ष पर पेट्रोल के लिए हुए खर्च का परमिाण लो ।
(iii) $(5,250),(10,500),(15,750),(20,1000)$ निर्देशांक लेकर ग्राफ पेपर पर बिंदुओं को दर्शाओ ।
(iv) बिंदुओं को जोड़कर चित्रालेख बनाओ ।

द्रष्टव्य : यहाँ ध्यान से देखो कि चित्रालेख एक सरलरेखा है । चित्रालेख बनाने में प्रयुक्त दो संख्याएँ प्रत्यक्ष विचरण के अन्तर्गत हैं । दो चर प्रत्यक्ष विचरण में अन्तर्गत हो, तो संख्याद्वय को लेकर अंकित ग्राफ (आलेख) एक सरलरेखा होगा ।

12 लीटर के लिए x-अक्ष पर बिंदु M को अंकित करो । उस बिंदु पर अंकित क्षैतिज रेखा चित्रालेख को ' A ' बिंदु पर प्रतिच्छेद करे । A बिंदु पर अंकित क्षैतिज समांतर रेखा y-अक्ष को ' B ' बिंदु पर प्रतिच्छेद करेगा ।
B बिंदु ' 600 ' संख्या को सूचित करता है । तब 12 लीटर पेट्रोल का मूल्य 600 रुपए है ।
उदाहरण 12 : अमित प्रति घंटा 30 कि.मी. रफ्तार से एक स्कूटर चला सकता है । समय और दूरी को लेकर एक चित्रालेख बनाओ । चित्रालेख की सहायता से निम्न प्रश्नों के उत्तर दो ।
(i) अजित को स्कूटर से 75 कि.मी. रास्ता तय करने के लिए कितना समय लगेगा ?
(ii) अजित 6 घंटे 30 मिनट में कितना रास्ता तय करेगा ?

समाधान : सारणी - 25

समय (घंटे में)	दूरी (कि.मी. में)
1	30
2	$2 \times 3=60$
3	$3 \times 30=90$
4	$4 \times 30=120$

समय और दूरी दोनों चरों में जो संबंध है, उसे चित्रालेख द्वारा व्यक्त करना होगा ।
चित्रालेख बनाने की सूचना :
(i) ग्राफ पेपर पर अक्ष-द्वय अंकित करो, आवश्यकता के अनुसार मान (स्केल) का चयन करो ।
(ii) x -अक्ष पर समय (घंटे में) और y -अक्ष पर तय की गई दूरी (कि.मी.)को लो ।
(iii) $(1,30),(2,60),(3,90)$ और $(4,120)$ निर्देशांक वाले बिंदुओं को चित्रालेख में दर्शाओ । बिंदुओं को जोड़कर चित्रालेख बनाओ

(iv) (a) y - अक्ष पर 75 कि.मी. के लिए x - अक्ष पर एक अनुरूप बिंदु (M) चिन्हित करो। इसकी सूचक-संख्या 2.5 होगी । अब स्पष्ट हुआ कि 75 कि.मी दूरी तय करने के लिए 2 घंटे 30 मिनट का समय लगेगा।
(b) x - अक्ष पर 3.30 घंटे के लिए y - अक्ष पर एक अनुरूप बिंदु (N) चिन्हित करो । इसकी सूचकसंख्या 105 होगी । अब स्पष्ट हुआ कि 3 घंटे 30 मिनट में अजित 105 कि.मी रास्ता तय करेगा । खुद करो :

1. उदाहरण 11 में अंकित चित्रालेख को ध्यान में रखकर निम्न प्रश्नों के उत्तर दो ।
(आवश्यकता पड़ने पर चित्रालेख बनाओ ।)
(i) 18 लीटर पेट्रोल का मूल्य ज्ञात करो ।
(ii) 850 रुपए में कितने लीटर पेट्रोल खरीदा जा सकेगा ?
2. उदाहरण 12 में अंकित चित्रालेख को ध्यान में रखकर निम्न प्रश्नों के उत्तर दो । (आवश्यकता पड़ने पर चित्रालेख बनाओ ।)
(i) 1 घंटे 30 मिनट में अजित तय करने वाली दूरी कि.मी. में बताओ ।
(ii) 50 कि.मी. दूरी तय करने के लिए अजित को कितना समय लगेगा ?

अभ्यास 10 (b)

1. निम्नस्थ शून्यस्थान भरो :
(a) चित्रालेख के क्षैजिक अक्ष को $\ldots \ldots \ldots \ldots$ कहते हैं ।
(b) चित्रालेख के ऊर्ध्वाधर अक्ष को कहते हैं।
(c) मूल बिंदु का निर्देशांक है ।
(d) $(0,5)$ निर्देशांक वाला बिंदु अक्ष पर स्थित है ।
(e) $(3,0)$ निर्देशांक वाला बिंदु $\ldots \ldots \ldots \ldots$ अक्ष पर स्थित है ।
(f) x - अक्ष पर स्थित एक बिंदु का $y-$ निर्देशांक $\ldots \ldots \ldots \ldots$ है ।
(g) y - अक्ष पर स्थित एक बिंदु का $x-$ निर्देशांक $\ldots \ldots \ldots \ldots$ है ।
$(h)(3,4)$ निर्देशांक वाले बिंदु का भुज $\ldots \ldots \ldots \ldots$ है ।
(i) $(9,1)$ निर्देशांक वाले बिंदु की कोटि $\ldots \ldots \ldots \ldots$ है ।
(j) $\mathrm{A}(3,2), \mathrm{B}(0,2), \mathrm{C}(3,0)$ निर्देशांक वाले बिंदुओं में से $\ldots \ldots \ldots \ldots \mathrm{x}$ - अक्ष पर स्थित है ।
2. दिए गए निर्देशांक वाले बिंदुओं को एक ग्राफ पेपर पर चिह्नित करो ।
$\mathrm{A}(3,0), \mathrm{B}(5,2), \mathrm{C}(1,4), \mathrm{D}(0,6)$ और $\mathrm{E}(2,2)$
3. निम्न क्षेत्रों मे दिए गए निर्देशांक वाले बिंदुओं को ग्राफ पेपर पर चिह्नित करो । बिंदुओं को जोड़ो :
(a) $(1,1)(2,2)(3,3)$ और $(4,4)$
(b) $(2,0)(5,0)(1,0)$ और $(3,0)$
(c) $(0,2)(0,4)(0,3)$ और $(0,5)$
4. (a) x - अक्ष से समांतर करके एक रेखा खींचो । इस पर किन्हीं पाँच बिंदुओं को चिन्हित करके उनका निर्देशांक लिखो । उन निर्देशांकों में कौन-सा सामान्य धर्म दिखाई देता है ?
(b) y - अक्ष से समांतर करके एक रेखा खींचो । इस पर किन्हीं पाँच बिंदुओं को चिन्हित करके उनका निर्देशांक लिखो। उन निर्देशांकों में कौन-सा सामान्य धर्म दिखाई देता है ?
5. नीचे वुछछ वर्गों की भुजाओं की लंबाई दी गई है । उनका परिमाप ज्ञात करो । वर्गों की भुजाओं की लंबाई और संबंधित वर्ग के परिमाप को क्रमश: x -निर्देशांक और y -निर्देशांक के रूप में लेकर ग्राफ पेपर पर बिंदुओं को चिह्नित करो । उन्हें जोड़ो । ज्ञात करोगे कि सभी बिंदु एक रेखा पर स्थित हैं । भुजाओं की लंबाई : 2 से.मी, 3 से.मी, 4 से.मी. और 5 से.मी. ।
6. निम्न सारणी में 3 के समापवर्त्य हैं ।

$$
\text { सारणी - } 26
$$

x	1	2	3	4	5
y	3	6	9	12	15

$(1,3)(2,6)(3,9)$ निर्देशांक वाले बिंदुओं को ग्राफ पेपर पर चिह्नित करो । उन्हें जोड़ो । दर्शाओ कि प्रत्येक बिंदु एकरेखीय हैं ।
7. एक लोहे को गर्म किया गया । निम्न सारणी में समय का अंतराल और तापमान को लिखा गया हैं । समय और तापमान के आधार पर बिंदुओं को ग्राफ पेपर पर चिह्नित करो । दर्शाओ कि यह एक सरलरेखीय चित्रालेख है ।

सारणी 127

समय (t) (सेकेंड में)	2	5	7	12
तापमान (T) (सेंटिग्रेड़ में)	19	25	29	39

चित्रालेख बनाकर निम्न प्रश्नों के उत्तर दो :
(a) $t=0$ समय पर तापमान कितना था ?
(b) $T=6$ समय पर तापमान कितना था ?

उत्तरमाला

अभ्यास 1

1. सही उक्ति : (i), (iv), (vi), (ix) और (xi) शेष गलत उक्ति ।
2. (i) \in, (ii) \subset (iii) \subset या $=(i v) \notin(v) \subset(v i) \supset 3$. (i) $\{2,3,4,5,6,7,8,9\}$ (ii) $\{2,4$,
$6,8\}$ (iii) (2) (iv) $2,4,6,8$ (v) $(-5,-4,-3,-2,-1,0,1,2,3)$ (vi) सोम, मङ्गल, बुध, गुरु, शुक, शनि, रवि (vii) $\}$ (viii) 8,16
3. (i) $(x \mid x)$ एक विषम प्राकृत संख्या $x<12$ (ii) $x \mid x$ अंग्रेजी बर्णमाला का एक स्वरवर्ण
(iii) $\{x \mid x$ एक पूर्णसंख्या $-2 \leq x \leq 2\}$ (iv) $\{x \mid$ एक अभाज्य संख्या $x<14\}$
(v) $\{2 \mathrm{n} \mid \mathrm{n} \in \mathrm{N}$) (vi) $3 \mathrm{n} \mid \mathrm{n} \in \mathrm{N}$ और $\mathrm{n} \leq 5\}$ (vii) ($\mathrm{x} \mid \mathrm{x}=5^{\mathrm{n}}, \mathrm{n} \in \mathrm{N}$ और $\left.\mathrm{n} \leq 4\right\}$
(viii) $\left\{x \mid x\right.$ अंग्रेजी वर्णमाला का एक अक्षर (ix) $x \mid x=2^{n}, n \in N$
4. (i) (m, a, t, n, c, i, c, s) (ii) (a, r, i, t, h, m, c, e) (iii) (p, r, o, g, a, m, e) (iv) (c, o, m, i, t, e)
5. $\mathrm{A} \cup \mathrm{B}=(1,2,3,4,5,6,8), \mathrm{A} \cap \mathrm{B}=\{2,4,6\} 7$. $\mathrm{A} \cup \mathrm{B}=2,3,4,5,6,7,8,9,10$
$\mathrm{A} \cap \mathrm{B}=\{5,6\}$ 8. (i) (1, 2, 3, 4, 5) (ii) (2, 4) (iii) (2) (iv) (1, 2, 3, 4, 6) (v) $\{2,3,4,5,6\}$
(vi) $\{2,3\} 9$. (i) $\mathrm{A}=1,3,4,5 \mathrm{~B}=2,4,5,6,7$ (ii) (4, 5) (iii) $1,2,3,4,5,6,7$ (iv) 1,3
(v) $\{2,6,7\}$ 10. (i) $\mathrm{A}=1,2,3,4,5,6,7 \mathrm{~B}=3,4,5$ (ii) $\mathrm{A} \cap \mathrm{B}=3,4,5$
(iii) $\mathrm{A} \cup \mathrm{B}=1,2,3,4,5,6,7$ (iv) $\mathrm{A} \cup \phi=(1,2,3,4,5,6,7)(\mathrm{v}) \mathrm{A} \cap \phi=\{ \}$ या ϕ 11. (a) $(a, b),(e, f),(b)(a, b, e, f)(C) \phi$ या $\}$

अभ्यास - 2(a)

1. (i) $-\frac{2}{8}(i i) \frac{5}{9}$ (iii) $\frac{-6}{5}(i v) \frac{2}{9}(v) \frac{19}{6} 2 .(i)-\frac{1}{13}$ (ii) $\frac{19}{13}$ (iii) $5(i v) \frac{56}{15}$ (v) $\frac{5}{2}$ (vi) (-1)
2. (i) गुणनात्मक तत्समक नियम (ii) गुणन का क्रम विनियम नियम (iii) गुणनात्मक व्युत्क्रम नियम
(iv) गुणन का साहचर्य नियम 4. $\frac{-96}{91}$ 5. व्युत्क्रम 6. व्युत्क्रम 7. (i) 0 (ii) 1 और -1 (iii) 0
3. (i) नहीं (ii) 1 और -1 (iii) $-\frac{1}{5}$ (iv) x (v) परिमेय संख्या (vi) ऋणात्मक परिमेय संख्या

अभ्यास - 2(b)

1. (i)

(iii)

(ii)

2.

$$
\begin{equation*}
1, \frac{1}{2}, 0,-1,-\frac{1}{2} \text {, (ii) }-\frac{3}{2},-1,-\frac{1}{2}, 0, \frac{1}{2} \text { (अन्य उत्तर भी संभव है), 6. (i) } \frac{5}{7} \text { (ii) } \frac{7}{9} \text { (iii) } \frac{3}{7} \tag{i}
\end{equation*}
$$

3. (i) $x=2, y=4$, (ii) $x=2, y=3, z=6$, (ii) $A=3, C=7$, (iv) $A=1, B=0, C=8, D=9$, (v) $A=3, B=7, P+11$, (vi) $\mathrm{A}=7, \mathrm{~B}=3, \mathrm{P}=9$, (vii) और (viii) $\mathrm{A}, \mathrm{B}, \mathrm{C}$ का मान कोई भी एक अंकीय संख्या हो सकता है ।
4. (a) $24,210,86$ (b) 5 द्वारा विभाज्य संख्या : $105,420,235,930,715,5$ और 2 से विभाज्य संख्या : 420,930 (c) 3 से विभाज्य संख्या : $78,504,216,774,804$, (d) $501,213,102,462$ और 2 से विभाज्य संख्या : 420, 930. 5. (a) 0,6 , (b) 1,4 (c) 2,2 (d) 1,4 , (e) 2,5
6. (i) (iv) (v) सही उक्ति 7 (ii) (iv) (v) सही उक्ति ।

अभ्यास - 3(a)

1. (i) $2,5 \mathrm{x}$ (ii) $5,12 \mathrm{x}$ (iii) $-6,4,-2 \mathrm{x}$ (iv) $-4,-3,-5 \mathrm{x}$ (v) $1,-2,-\mathrm{x}$
2. (i) $7 x$ (ii) $-x_{2}$ (iii) $-5 x^{3}$ (iv) $-3 x^{2}$ (v) $4 x-4$ (vi) $3 x^{2}+2$ (vii) $x^{2}+x$ (viii) $x^{2}+3 x+4$
3. (i) 5 x , (ii) 7 x , (iii) 4 x , (iv) 3 x , (v) 5 x .7 x (vi) $2 \mathrm{x}+5 \mathrm{y} .5 \mathrm{y}$
4. (i) $10 x$, (ii) $9 x^{2}$ (iii) $9 x^{3}$ (iv) $4 x^{2}+5 x$ (v) $x^{3}-x^{2}+x+7$ (vi) $2 x^{2}+2 x$ (vii) $2 x^{2}$ (viii) $2 x^{2}+6 x-4$ (ix) $6 x^{2}-x+4$ (x) 0 .

अभ्यास - 3(b)

1. (i) $-3 x, 5,-3,2 x$ (ii) $2 x, 3,2,5 x$, (iii) $-3 x,-2,-3,-5 x$ (iv) $-3+2 x, 2 x-1,5 x$, (v) $3 x-2,-4-2,4 x-6$
2. (i) $3 x$ (ii) $8 x$ (iii) $-5 x$ (iv) $2 x$ (v) $-2 x$ (vi) $2-x^{2}-x$ (vii) $x^{2}-4 x-6$
3. (i) $2 x$ (ii) $4 x^{2}$ (iii) 0 (iv) $2 x^{2}+4$ (v) $x^{2}-10 x$ (vi) $6 x+8$ (vii) $x^{3}-30 x-8$

अभ्यास - 3(c)

1. (i) $15 x$, (ii) $6 x^{4}$ (iii) 0 (iv) $3 x^{3} 2$. (i) -7 (ii) 1 (iii) $-x,-6$ (iv) $-3 x^{3}, 4$
2. (i) $x^{2}-1$ (ii) $x^{3}-1$ (iii) $x^{3}+1$ (iv) $2 x^{2}-3 x-2$ (v) $2 x^{3}-x^{2}+4 x+15$ (vi) $-x^{3}+2 x^{2}+17 x+16$ (vii) $x^{4}-1$ (viii) $2 x^{4}-x^{3}+3 x^{2}-x+1$ (ix) $x^{4}+x^{3}-x-1$

अभ्यास - 3(d)

1. (i) 4 x (ii) 6 x (iii) $-4 \mathrm{x}^{2}$ (iv) -5 x 2 . (i) 2 x (ii) -2 x (iii) -2 x (iv) 2 x 3. (i) $7 \mathrm{x}^{2}$, (ii) -7 x , (iii) -3 x (iv) 7 , (v) $-7,44$. (i) $3 x^{2}+2$, (ii) $4 x^{2}-3$ (iii) $6 x^{2}-2 x+3$ (iv) $4 x+3$, (v) $6 x+5$ (vi) $-12 x+11$

अभ्यास - 3(e)

1. (i) $6 x^{2}+3 x$, (ii) x, (iii) $3 x^{2}+2$ (iv) 1 (v) $12 x^{2}+8 x+2$ 2. (i) $x-7$ (ii) $x-4$, (iii) $x+5$ (iv) $x-1$ (v) $x^{2}-x+1$, (vi) $x^{2}+x+1$ (vii) $x^{2}-x+1$, (viii) $-x^{2}-5 x-6$ (ix) $x^{2}-x-2$ (x) $2 x^{2}+3 x+2$
2. (i) $(x+14) .42$ (ii) $(x-11) \cdot 19$, (iii) $(2 x-2) 1-9$ (iv) $\left(9 x^{2}+2\right) 3$ (v) $4 x^{2}-2 x+1,-2$ (vi) $-x^{2}+x-1$, -2 4. (i) -14 , (ii) 2 (iii) -2

अभ्यास - 3(f)

1. (i) 4 , (ii) 2 y (iii) $-4 y$ (iv) $4 x y$ (v) $a-b 2$. (i) $b+2 b c+c$ (ii) $16+8 b+b$, (iii) $r-20 r+100$, (iv) $9 n+12 n+4$ (v) $4 m+4 m n+n$, (vi) $49 p-14 p q+q$ (vii) $4 x+12 x y+9 y$, (viii) $4 m+9 n+p-12 m n+6 m p$ $-4 m p(i x) x^{2}+y^{2}+16 z^{2}-2 x y-8 y z+8 x z$ (x) $a+4 b+9 c+4 a b+12 b c+6 a c 3$. (i) 10404 (ii) 92416 , (iii) 1006009 (iv) 16008001 , 4. (i) 9801 , (ii) 996004 , (iii) 89991 (iv) 3696 (v) 79.21 (vi) 9.975 (vii) 200 (viii) 0.08 (ix) 18005 . (i) 10712, (ii) 26.52, (iii) 10094 (iv) 95.06 ; 6. (i) $x+6 x+9$ (ii) $4 y+20 y+25$ (iii) $4 a-28 a+49$ (iv) $1.21 m,-0.16$ (v) $b-a$ (vi) $36 x-49$ (vii) $p-25$, (viii) $9 y-4 x^{2}$ (ix) $x^{4}-1$ (x) $16 y^{4}-817$. (i) $x^{2}+10 x+21$ (ii) $16 x^{2}+24 x-5$, (iii) $16 x^{2}-24 x+5$, (iv) $16 x^{2}+16 x-5$ (v) $4 a^{4}+28 a^{2}+45$, (vi) $x^{2} y^{2} z^{2}-6 x y z+8$; 8. (i) $2 a+2 b$, (ii) $40 x$, (iii) $98 m^{2}+128 n^{2}$, (iv) $41 m^{2}+80 m m+41 n^{2}$, (v) $4 p^{2}-4 q^{2}$ (vi) $a^{2} b^{2}+b^{2} c^{2}$, (vii) $m^{4}+n^{4} m^{2}$, (viii) $2 a+2 b+2 c-4 c a$ (ix) $8 a^{2}+10 b^{2}+26 c^{2}-16 a b-4 b c+16 a c(x) 8 x^{2}+12 y^{2}-20 x y-12 y z+8 x z$. 9. (i) $(2 x+3 y)$, (ii) $(8 m-$ $3 n$), (iii) $(2 x-1)$ (iv) $(x+2 y+z)$, (v) $(2 x-y-z)(v i) 3 x-2 y+z$.

अभ्यास - 4(a)

1. (i) $12(\mathrm{x}+3) 2.4(2 \mathrm{a}+\mathrm{b}) 3.11(2 \mathrm{y}-3 \mathrm{z}) 4$. $7 \mathrm{pq}(2+5 \mathrm{r}) 5.5 \mathrm{a}(2 \mathrm{ab}+1) 6.5 \mathrm{abc}(3 \mathrm{a}-2 \mathrm{~b}), 7$. $2 \mathrm{a}\left(4 \mathrm{a}^{2}+2 \mathrm{a}+1\right) 8.5 \mathrm{a}^{3} \mathrm{~b}^{3} \mathrm{c}^{3}\left(6+5 \mathrm{a}^{2} \mathrm{c}^{3}-3 \mathrm{a}^{3} \mathrm{~b}^{3} \mathrm{c}^{3}\right) 9.10(2 \mathrm{x}+5) 10 .(2 \mathrm{x}+3 \mathrm{y})(5 \mathrm{a}-2 \mathrm{~b}) 11.4(5 \mathrm{x}+9 \mathrm{y})$ $(10 x+18 y+3) 12.3 a(6 a-5 b)(3-4 a) 13$. $(x-2 y)(5 x-10 y+3) 14.2(a+2 b)(3-2 a-4 b) 15 .(a-$ 1) $(\mathrm{a}+\mathrm{b})$ 16. $(\mathrm{x}-\mathrm{y})(\mathrm{x}-\mathrm{y}+1)$ 17. $(\mathrm{x}-\mathrm{y})(\mathrm{a}+2 \mathrm{~b}+\mathrm{c})$ 18. $(\mathrm{b}-\mathrm{c})(\mathrm{a}+\mathrm{b}+\mathrm{c})$ 19. $\mathrm{x}^{2}(\mathrm{a}-2 \mathrm{~b})(\mathrm{x}+1) 20.2$ $(x+y)(4 b-3 a) 21.5(a+b)(x-y) 22 .(x+y)\left(a^{2}+b^{2}+x^{2}\right)$
अभ्यास - 4(b)
2. (i) $(\mathrm{x}+\mathrm{y})(\mathrm{x}+8)$ 2. $(\mathrm{q}+\mathrm{r})(\mathrm{p}+\mathrm{q})$ 3. $(\mathrm{a}+\mathrm{d})(\mathrm{b}+\mathrm{c})$ 4. $(\mathrm{p}+\mathrm{r})(\mathrm{q}+\mathrm{r}) 5$. $(5 \mathrm{y}-2)(3 \mathrm{x}+1) 6 .(\mathrm{a}+\mathrm{b})$ $(\mathrm{x}-\mathrm{y})$, 7. $(5 \mathrm{p}+3)(3 \mathrm{q}+5) 8 .(\mathrm{a}+3 \mathrm{~b})(2-3 \mathrm{a}-9 \mathrm{~b}) 9 .(\mathrm{a}+2)(\mathrm{a}+\mathrm{b}) 10 .(\mathrm{x}-\mathrm{z})(\mathrm{x}+\mathrm{y}) 11 .(\mathrm{a}-\mathrm{b})(\mathrm{a}-\mathrm{c})$ 12. $(2 \mathrm{p}-\mathrm{q})(\mathrm{p}-\mathrm{r})$ 13. $(\mathrm{x}-3)(\mathrm{a}+2)$ 14. $(2 \mathrm{x}-5)(\mathrm{x}+2)$ 15. $(\mathrm{x}+1)\left(\mathrm{x}-\mathrm{y}^{2}\right) 16 .\left(1 \mathrm{~m}-\mathrm{n}^{2}\right)(\mathrm{m}-1)$ 17. $(\mathrm{x}-$ $2 \mathrm{y})\left(\mathrm{x}^{2}+3 \mathrm{y}^{2}\right) 18$. $(6 \mathrm{a}-\mathrm{b})(\mathrm{b}-2 \mathrm{c}) 19$. $(\mathrm{x}-11 \mathrm{y})(\mathrm{x}-1) ; 20 .(3 \mathrm{a}+4 \mathrm{~b})(\mathrm{x}-2 \mathrm{y})$.

अभ्यास - 4(c)

1. (i) $(\mathrm{a}+3)(\mathrm{a}+5)($ ii) $(\mathrm{x}+2)(\mathrm{x}+3)($ iii) $(\mathrm{x}+6)(\mathrm{x}+1)(\mathrm{iv})(\mathrm{x}+6)(\mathrm{x}+2)(\mathrm{v})(\mathrm{x}+3)(\mathrm{x}+$ 8) (vi) $(x+1)(x+1)$ 2. (i) $(p-4)(p-6)(i i)(x-2)(x-6)$, (iii) $(x-2)(x-5)$, (iv) $(x-2)(x-7)(v)$ $(\mathrm{x}+7)(\mathrm{x}-3)(\mathrm{vi})(\mathrm{x}-2)(\mathrm{x}-1) 3$. (i) $(\mathrm{a}+1)(\mathrm{a}-5)(\mathrm{ii})(\mathrm{x}+3)(\mathrm{x}-14)($ iii) $(\mathrm{x}+3)(\mathrm{x}-7)(\mathrm{iv})(\mathrm{x}+9)$ $(\mathrm{x}-10)(\mathrm{v})(\mathrm{x}+7)(\mathrm{x}-9)($ vi) $(\mathrm{x}-2)(\mathrm{x}-1) 4$. (i) $(\mathrm{a}+7)(\mathrm{a}+11)$ (ii) (a-6) (a-2) (iii) (x+2) (x4) 5. $(a-9)(a+6) 6$. $(x-2 y-3)(x-2 y-2)$

अभ्यास - 4(d)

1. (i) $(2 \mathrm{x}+1)(2 \mathrm{x}+1)(\mathrm{ii})(3 \mathrm{~b}+2 \mathrm{c})(3 \mathrm{~b}+2 \mathrm{c})($ (iii) $(4 \mathrm{a}+5 \mathrm{~b})(4 \mathrm{a}+5 \mathrm{~b})(\mathrm{iv})(7 \mathrm{x}+8 \mathrm{y})(7 \mathrm{x}+8 \mathrm{y})(\mathrm{v})$ $\left(a^{2}+3 b^{2}\right)\left(a^{2}+3 b^{2}\right)$
2. (i) $(3 \mathrm{x}-1)(3 \mathrm{x}-1)\left(\right.$ ii) $(4 \mathrm{x}-5 \mathrm{y})(4 \mathrm{x}-5 \mathrm{y})($ iii $)(7 \mathrm{a}-9 \mathrm{~b})(7 \mathrm{a}+9 \mathrm{~b})(\mathrm{iv})(8 \mathrm{a}-1)(8 \mathrm{a}-1)(\mathrm{v})\left(10 \mathrm{a}^{2}-\mathrm{b}\right)\left(10 \mathrm{a}^{2}-\mathrm{b}\right)$
3. (i) $(4 x+3 y+5 z)(4 x+3 y+5 z)($ ii $)(7 x+5 y+z)(7 x+5 y+z)(i i i)(2 a+3 b-c)(2 a+3 b-c)$ (iv) (10a-9b-7c) (10a-9b-7c) (v) ($\left.\mathrm{x}^{2}-\mathrm{y}-\mathrm{z}\right)\left(\mathrm{x}^{2}-\mathrm{y}-\mathrm{z}\right)$
4. (i) $(4 a+3 b)(4 a-3 b)(i i)(5 a+6 b)(5 a-6 b)(i i i)(9 a+10 b)(9 a-10 b)(i v)(4 a+7 b)(4 a-7 b)(v)$ $(12 \mathrm{a}+15 \mathrm{~b})(12 \mathrm{a}-15 \mathrm{~b})$ or, $9(4 \mathrm{a}+5 \mathrm{~b})(4 \mathrm{a}-5 \mathrm{~b})($ vi) $(16 \mathrm{a}+17 \mathrm{~b})(16 \mathrm{a}-17 \mathrm{~b})($ vii $)(20 \mathrm{a}+15 \mathrm{~b})(20-$ $15 b)$ or, $25(4 a+3 b)(4 a-3 b)(v i i i)(21 a+30 b)(21 a-30 b)$ or, $9(7 a+10 b)(7 a-10 b)(i x)$ $(11 \mathrm{a}+17 \mathrm{~b})(11 \mathrm{a}-17 \mathrm{~b})(\mathrm{x})(9 \mathrm{a}+19 \mathrm{~b})(9 \mathrm{a}-19 \mathrm{~b})(\mathrm{xi})(\mathrm{a}+\mathrm{b}+\mathrm{c})(\mathrm{a}+\mathrm{b}-\mathrm{c})(\mathrm{xii})(\mathrm{a}+\mathrm{b}-\mathrm{c})(\mathrm{a}-\mathrm{b}+\mathrm{c})$
5. (i) $\left(\mathrm{a}^{2}+1+\mathrm{a}\right)\left(\mathrm{a}^{2}+1-\mathrm{a}\right)$ (ii) $\left(\mathrm{x}^{2}+\mathrm{x}+1\right)\left(\mathrm{x}^{2}-\mathrm{x}+1\right)$ (iii) $\left(\mathrm{x}^{2}+3 \mathrm{y}^{2}+6 \mathrm{xy}\right)\left(\mathrm{x}^{2}+3 \mathrm{y}^{2}-6 \mathrm{xy}\right)$ (iv) $\left(x^{2}+3 x y+9 y^{2}\right)\left(x^{2}-3 x y+9 y^{2}\right)(v)\left(x^{2}+4 x+16\right)\left(x^{2}-4 x+16\right)$
6. (i) $(\mathrm{a}+3+\mathrm{b})(\mathrm{a}+3-\mathrm{b})($ (ii) $(\mathrm{a}-2+\mathrm{c})(\mathrm{a}-2-\mathrm{c})$ (iii) $(2 \mathrm{a}-1-3 \mathrm{~b})(2 \mathrm{a}+1-3 \mathrm{~b})$ (iv) $(\mathrm{a}-3 \mathrm{~b}+4 \mathrm{c})(\mathrm{a}-3 \mathrm{~b}-$ 4c) (v) $(4 a-3 b+5 c)(4 a-3 b-5 c)$
7. (i) ($\mathrm{x}+13$) ($\mathrm{x}-15$) (ii) ($\mathrm{x}+21$) ($\mathrm{x}-17$) (iii) ($\mathrm{x}+14$) ($\mathrm{x}-8)$ (iv) ($\mathrm{x}+31$) ($\mathrm{x}-29)$ (v) ($\mathrm{x}-27$) ($\mathrm{x}+23$) (vi) ($\mathrm{x}-19$) $(\mathrm{x}+9)($ vii) $(\mathrm{x}-33)(\mathrm{x}+27)$ (viii) $(\mathrm{x}+16)(\mathrm{x}-12)$

अभ्यास - 5(a)

1. (i) 2^{4}, (ii) $(-2)^{5}$ (iii) $\left(\frac{3}{4}\right)^{3}$ (iv) $\left(\frac{1}{7}\right)^{4}$ (v) $\left(\frac{5}{3}\right)^{3}$ (vi) $\mathrm{y}^{5}($ vii $)(-\mathrm{p})^{3}\left(\right.$ viii) $(\mathrm{a}-\mathrm{b})^{4}(\mathrm{ixx})(\mathrm{a}+\mathrm{b})^{3}(\mathrm{x})\left(\frac{a}{b}\right)^{5}$
2.

क्रमांक	(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)	(viii)	(ix)	(x)
आधार	1	-1	-1	9	-2	$\frac{1}{2}$	$\frac{2}{3}$	10	10	-10
घात	15	11	18	5	5	6	5	4	7	5
मान	1	-1	1	59049	-32	$\frac{1}{64}$	$\frac{32}{243}$	10000	10000000	-100000

3.

स्तंभ	प्रथम	द्वितीय	तृतीय	चतुर्थ	पंचम	षष्ठ	सप्तम	अष्टम
उत्तर	64	729	2	5	4	5	$-\frac{1}{128}$	$-\frac{1}{3}$

4. (i) 10000 (ii) चतुर्थ (iii) तृतीय (iv) $-\frac{3}{2}$ (v) $\frac{1}{25}$
5. (i) तृतीय (ii) 25 (iii) 64

अभ्यास - 5(b)

1. (i) 3^{10} (ii) $\left(\frac{1}{2}\right)^{11}$ (iii) $\left(\frac{2}{3}\right)^{10}$ (iv) $(-4)^{9}$ (v) $\frac{3}{2}$ (vi) $(4)^{9}$ (vii) $(3)^{18}$ (viii) $(2)^{17}$ (ix) $(-7)^{13}$ (x) $(2)^{7}$ (xi) (5) $)^{12}\left(\right.$ xii) $(-2)^{12}$ or 2^{12} (xiii) $\left(\frac{7}{3}\right)^{4}$ (xxiv) $\left(\frac{3}{4}\right)^{9}(x v)\left(\frac{a}{b}\right)^{10}(x v i)\left(\frac{-a}{b}\right)^{7}$
2. (i) 9 (ii) 972 (iii) 8 (iv) 64 (v) $\frac{6651}{256}$ 3. (i) 512 (ii) $a^{8} b^{7}$ (iii) $a^{7} b^{4}$ (iv) 1 (v) 1
3. (i) 2^{18} (ii) 3^{14} (iii) $5^{(3 \mathrm{~m}-3)}$ (iv) $(-2)^{33} 5$. (i) F (ii) T (iii) F (iv) T (v) T (vi) F (vii) T (viii) F (ix) F (x) T 6. (i) (iv) (v) (vii) (viii) और (x)

अभ्यास - 5(c)

1. (i) $\frac{1}{4}$ (ii) $\frac{1}{16}$ (iii) $\frac{1}{27}$ (iv) $\frac{1}{243}$ (v) $\frac{1}{10000}$ (vi) $\frac{1}{125}$ (vii) $\frac{1}{8000}$ (viii) $\frac{1}{125000}$ (ix) $\frac{1}{100}$ (x) $\frac{1}{100000}$ (xi) -1 (xii) -1
2. (i) 9 , (ii) $\frac{125}{8}$ (iii) 10000 (iv) 0.008 या $\frac{1}{125}$ (v) $\frac{125}{27}$ (vi) $\frac{1000}{27}$ (vii) -1 , (viii) 1
3. (i) $\left(\frac{1}{3}\right)^{-6}$ (ii) $\left(\frac{1}{6}\right)^{-3}$ (iii) $\left(-\frac{1}{6}\right)^{-3}$ (iv) $\left(\frac{1}{5}\right)^{-4}$ (v) $\left(\frac{1}{7}\right)^{-3}$ (vi) 8^{-3} (vii) $\left(\frac{3}{2}\right)^{-6}$

अभ्यास - 5(d)

1. (i) 16 (ii) 32 (iii) 3125 (iv) $\frac{3}{5}$ (v) 36 (vi) 2432 . (i) 2 (ii) 4 (iii) 81 (iv) $\frac{1}{2}$ (v) 625 (vi) $\frac{7}{2}$
2. (i) 1 (ii) 14 . (i) $\mathrm{a}-\mathrm{b}$ (ii) $\mathrm{x}-\mathrm{y}$

अभ्यास - 6(a)

1. $729.1369,2116,13924,50625$
2. $28,278,314,23872 \ldots$ वर्ग सम संख्या $113,4315 \ldots$ वर्ग विषम संख्या
3. $10^{2}-9^{2}, 14^{2}-13^{2}, 16^{2}-15^{2}, 21^{2}-20^{2}, 27^{2}-26^{2} 6 .(7,24,25)(11,60,61)(15,112,113)(12,35$, 37) $(16,63,65) 8.35,49,223,3419$. (a), (b), (d), (f), (g) गलत (c), (e) सही

अभ्यास - 6(b)

1. $2025,3025,7225,11025,24025,65025$. 2. 729 , $1369,2116,6084,9604.3$. 361 , 10404 , 11449 . 4. $8649,9025,9604$. 5. 2601, 2916, 3136, 3364, 3481. 6. 1225.5626, 9025, 13225, $42025,7.0 .0144,1.2321,0.000009,8.121,65.61,0.36$

अभ्यास - 6(c)

1. (a) 0.6 , (b) 1.1 , (c) $1 \frac{1}{3}$, (d) 0.03 , (e) $2 \frac{1}{2}, 2.17,19,28,2.5,3,6,4.4,3.2,3.305,316,329,273$, $1502,1371,231,4.7 .29,6.03,2.098,0.99,2.34$, 5 . (i) 2.236 , (ii) 2.645 , (iii) 3.162 (iv) 1.581 , (v) $1.897,6.1 .117,1.666,2.015,1.811,2.1367$. (i) 3.535 , (ii) 1.539 , (iii) 3.732 , (iv) 0.102 , (v) 9.898

अभ्यास - 6(d)

1.961 और $1024,2.50,3.35,4.3,5.48,6.144$ मीटर, 7.150 मीटर, 8.580 रुपए 9.120 आदमी, 10. $40,11.25,12.46 .24$ मीटर ।

अभ्यास - 6(e)

1. $1331,1728,2197,2744,3375,4096,4913,5832,6859,8000$, 2 . (i) 12 , (ii) 55 , (iii) 60 , (iv) 3 , (v) 3, 3. 216, 4. 5, 5. 5.6, 6. 3375 घन से.मी., $7.8 ; 8.43200$ रुपए ।
अभ्यास - 6(f)
2. (i) 7 , (ii) 10 , (iii) 42 , (iv) 54 , (v) $200,2.1,14,3.2,14,4.64,5.5,25$.

अभ्यास - 6(g)

1. $-1,-5,-18,-26,-140,2.8,3 .-72,4 .-56,5.75,6.225 ; 7 .-77,8.60,9.14,10 .-9,11.12,12$. पूर्ण घन संख्या $-64,-1728,-2197$ और घनमूल $-4,-12,-13,13$ (i) -30 , (ii) -72 , (iii) -300 , (iv) -80

अभ्यास - 6(h)

1. (i) $\frac{343}{729}$, (ii) $\frac{-512}{1331}$, (iii) $\frac{1728}{343}$, (iv) $\frac{-2197}{512}$, (v) $17 \frac{72}{125}$, (vi) $34 \frac{21}{64}$ (vii) $-\frac{125}{27}$, (viii) 0.008 , (ix) 2.197 , (x) 0.000027 , 2. (i) $\frac{2}{5}$,(ii) $-\frac{4}{11}$ (iii) $\frac{-3}{16}$ (iv) $\frac{13}{21}$, (v) (0,1) (vi) 0.2 , (vii) 1.2 , (viii) $0.05,3$ (i), (iii), (iv), (vi)

अभ्यास - 7(a)

1. (i) 9 , (ii) 7 , (iii) 4 , (iv) 21 , (v) 5 , (vi) 5 , (vii) 5 , (viii) 2.4 , (ix) -11 , (x) 2.1 , 2. (i) 4 , (ii) 16 , (iii) -5 , (iv) 17 , (v) 9 , (vi) 2 , (vii) $\frac{9}{25}$, (viii) 12 , (ix) 2 , (x) -10 3. (i) 10 , (ii) -1 , (iii) -26 , (iv) $-12 \frac{2}{3}$, (v) -2 ; 4. (i) $12 \frac{1}{6}$, (ii) $\frac{2}{5}$ (iii) -26 , (iv) $2 \frac{1}{4}$, (v) -10

अभ्यास - 7(b)

1. $80,2.72,3.8,4.11,5.15,16,6.14,7$. हमीद का ₹ 200 और रहीम का ₹ $150,8.36,9.37,10.150$, 11. $20,50,12$. लड़के 21 और लड़कियाँ $18,13.40^{\circ}, 50^{\circ}, 14.5$ रुपये के 50 और 10 रुपए के 2515 .चौड़ाई 25 भी और लंबाई 50 मी. 16. $\frac{9}{12}, 17.70^{\circ} 18.4$ कि.मी ।

अभ्यास - 7(c)

1. (i) 0 और 3 (ii) $\frac{5}{2}$ और $\frac{5}{2}$, (iii) -2 और 2 , (iv) $\frac{4}{3}$ और $\frac{4}{3}$, (v) $\frac{5}{2}$ और 0 , (vi) 0 और $\frac{b}{a}$, (vii) -9 और 9 , (viii) -27 और 27. 2. (i) 3 और -1 , (ii) 5 और -1 , (iii) 5 और -4 , (iv) -3 और -4 , (v) -7 और 5 , (vi) 5 और 1 , (vii) -1 और $\frac{3}{2}$, (viii) 1 और $\frac{5}{3}$, (ix) a और b , (x) -a और b . अभ्यास - 8(a)
2. 500 रुपए, $2.16 \%, 3.25 \%, 4.56 \frac{1}{4} \%, 5.33 \frac{1}{3} \%, 6.5 \frac{5}{8}$ रुपए, 7.650 रुपए, $8.6 \frac{2}{3} \%, 9.600$ रुपए और 400 रुपए, 10.500 रुपए, 11.405 रुपए, 12.500 रुपए, 13 . पहले की दुकान से खरीदना फायदेमंद रहेगा, 14. 400 रुपए, 15.817 .60 रुपए, $16.40 \%, 17.733 .33$ रुपए ।

अभ्यास - 8(b)

1. (i) 36%, (ii) . 8 पैसे, (iii) 12.50%, (iv) $\frac{25}{4} \%, 2.11 .480$ रुपए, 3.8700 रुपए, 4.1500 रुपए, 5.1620 रुपए, $6 . \mathrm{P}\left(\frac{9 \mathrm{~T}+25}{25}\right)$ रुपए, 7.10 वर्ष, $8.10,000$ रुपए, $9.10 \% 10.6 \frac{1}{4} \% 11.2000$ रुपए, $12.22 \frac{1}{2}$ वर्ष, 13. 16 वर्ष, 14. $8 \%, 15.12,958$ रुपए, 16.8%

अभ्यास - 8(c)

1. रु133.12प., 2. रु 1717.35 प., 3. 1655 रुपए, 4.1261 रुपए, 5.6655 रुपए, 6 . रु $36,659.70$ प., 7.2 वर्ष, 8. रु 567.45 प., 9.3000 रुपए, $10.3070 \frac{5}{8}$ रुपए, 11 .रु1125.21प., 12. रु103.37प., 13. रु 166116.80 प., 14. 22898; 15. 38640 रुपए ।

अभ्यास - 8(d)

1.10624 रुपए, 2.50 रुपए, 3.9000 रुपए, $4.147 .40 ; 5.129 .01$ 6. $400,20,7.144 .07 ; 8.120 .26$; 9. $122.65 ; 10.140$.

अभ्यास - 8(e)

1. 100 रुपए, 2.1000 रुपए, 3. दो बार, 4. (a) 5 रुपए, (b) कोई ब्याज नहीं मिलेगा । 5. (1) nil, (2) 22.92 ; 6. 127 रुपए, 7.17 .09 रुपए, 8.144 .58 रुपए, $9.4 .5 \% ; 10.293 .00$ 11. 42,43 रुपए, 12.6%.
अभ्यास-9(a):1. x संतरों की संख्या : $8 \quad 4 \quad 18 \quad 10 \quad 13$
y संतरों का मूल्य : 1814
2. (a) (i) 60 रुपए, (ii) 5 , (b) (i) 700 रुपए, (ii) 6 दिन, $3.15 ; 4.225$ रुपए, $5,5.22 .50$ रुपए, 6 कि.ग्रा., 6.320 कि.मी., 5 घंटे, 7.7 .50 रुपए, $8 ; 8.12$ रुपए, 9.5 लीटर, 10.4200 रुपए, 11.720 रुपए, $12.150,108$ रुपए । अभ्यास -9(b): 1. (i) सीधे विचरण में (ii) सीधे विचरण शेष प्रतिलोम विचरण 2. $\mathrm{x}: 10,40, \mathrm{y}: 8,4 . \mathrm{k} 120$, $120,120,120,120,120,3$. (i) प्रतिलोम, (ii) सीधे, (iii) सीधे, (iv) प्रतिलोम, 4.1 वर्ग.मी., 5.12 आदमी, 6. $6,7.12$ दिन, $8.25,9.1: 2: 3,10.6$ दिन, 11. 20 एकड़, 12.10 मिनिट, 2 कि.मी. ।

अभ्यास -9(c): 1.6 दिन, 2.20 दिन, 3.20 दिन, 4.10 दिन, 5.324 मिटर, 6.8 आदमी, 7.10 घंटे, 8.27 दिन । (अभ्यास-10(a): 4. (a) 11 am , (b) 5 am , (c) 11 am , (d) $20^{\circ} \mathrm{c}$, (e) $40^{\circ} \mathrm{c} 5$. (a) 40,45 , (b) $50-55$, (c) 16 , (d) $40-45$ (e) 57 . (a) 120 (b) 90 (c) 5.4 (d) 908 . (a) 270, 360, (b) 135, 135, (c) 180, (d) 135

अभ्यास-10(b)): 1. (a) x-अक्ष, (b) y-अक्ष, (c) 0,0 (d) y-अक्ष, (e) x-अक्ष, (f) 0 , (g) 0 , (h) 3 , (i) 1 (j) $c(3,0)$

