सरल गणित (ज्यामिति)
 कक्षा - आठवीं

शिक्षक शिक्षा निदेशालय एवं राज्य शैक्षिक अनुसंधान और प्रशिक्षण परिषद, ओड़िशा, भुवनेश्वर

ओड़िशा विद्यालय शिक्षा कार्यक्रम प्राधिकरण भुवनेश्वर

सरल गणित (ज्यामिति)

कक्षा-आठवीं

लेखक मंडली :
डॉ. प्रसन्न कुमार शतपथी (समीक्षक)
डॉ. रजनी वल्लभ दाश
श्री नगेन्द्र कुमार मिश्र
श्रीमती कुमुदिनी जी
श्री कैलास चन्द्र स्वाइँ

समीक्षक :
श्री मदन मोहन महान्ति
श्री नारायण साहु
श्री मानस मिश्र
श्री कार्त्तिक चंद्र बेहेरा
संयोजना :
डॉ. नलिनीकान्त मिश्र
डॉ. तिलोत्तमा सेनापति
डॉ. सबिता साहु
प्रकाशक :
विद्यालय और गणशिक्षा विभाग,
ओड़िशा, सरकार

अनुवादक मंडली :
प्रो. राधाकान्त मिश्र
प्रो. स्मरप्रिया मिश्र
डॉ. सनातन बेहेरा
डॉ. स्नेहलता दास
डॉ. लक्ष्मीधर दाश (अनुवादक)
डॉ. अजित प्रसाद महापात्र (पुनरीक्षक)
डॉ. अमूल्य रत्न महान्ति

संयोजना :

डॉ. सबिता साहु

मुद्रण वर्ष : २०२२

प्रस्तुति : शिक्षक शिक्षा निदेशालय एवं राज्य शैक्षिक अनुसंधान और
प्रशिक्षण परिषद, ओड़िशा, भुवनेश्वर
और
ओड़िशा राज्य पाठ्यपुस्तक प्रणयन और प्रकाशन संस्था, भुवनेश्वर
मुद्रण : पाठ्य पुस्तक उत्पादन और विक्रय, भुवनेश्वर

इस पुस्तक के बारे में कुछ...

आज का युग विज्ञान और प्रौद्योगिकी का युग है। तात्तिव और प्रयोगात्मक-इन दोनों दिशाओं में विज्ञान की अग्रगति के लिए गणित-शास्त्र की एक सुदृढ़ भूमिका है गणित शास्त्र में बीजगणित एक महत्वपूर्ण अंग है । विद्यालय के स्तर से बीजगणित का पाठ्यक्रम एक उपयुक्त पृष्ठभूमि पर प्रतिष्ठित होना वांछनीय है ।

विश्व में दूसरे विकासशील देशों की तरह भारत भी इन क्षेत्र में उल्लेखनीय भूमिका ले रहा है । माध्यमिक शिक्षा स्तर के लिए राष्ट्रीय स्तर पर प्रस्तुत National Curriculum Frame Work-2005 में गणित की शिक्षा को अधिक महत्व प्रदान किया गया है । उसी के अनुसार राष्ट्रीय शैक्षिक अनुसंदान और प्रशिक्षण परिषद् ने पाठ्यक्रम और पाठ्य-चर्या का निर्माण किया है। राष्ट्रीय शिक्षास्रोत को ध्यान में रखकर ओड़िशा माध्यमिक शिक्षा परिषद, शिक्षक शिक्षा निदेशालय और राज्य शैक्षिक अनुसंधान और प्रशिक्षण परिषद द्वारा प्रस्तुत राज्य पाठ्यक्रम के आधार पर आठवीं कक्षा के लिए पाठ्यक्रम प्रस्तुत किया गया है और उसी के अनुसार नूतन रूप से सरल गणित (बीजगणित) पाठ्यपुस्तक का प्रकाशन किया गया है ।

अनुभवी लेखकों द्वारा पाठ्युुस्तक की रचना की गई और पुस्तक की पांडुलिपि को राज्य स्तर की एक कार्यशाला में कार्यरत गणित शिक्षक शिक्षिकाओं द्वारा चर्चा की गई । परवर्ती समय में पाठ्यक्रम कमेटी में पांडुलिपि पढ़ी गई और उस पर चर्चा हुई । चर्चा के उपरांत जो सुझाव मिले उसी के अनुसार उसे सुधारा गया ।

शिक्षक शिक्षा निदेशालय और राज्य शैक्षिक अनुसंधान तथा प्रशिक्षन परिषद इस पुस्तक के आवश्यक संशोधन के लिए गणित विशारद और कार्यरत गणित शिक्षक-शिक्षिकाओं द्वारा सन् २०१४ ई में प्रयास होने के बावजूद यह संभव नहीं हुआ था। सन् २०१६ ई. में पुस्तक का संशोधन कार्य किया गया है । फिर भी अगर तथ्यों में त्रुटियाँ रह गई हों, तब कृपया संबंधित प्राधिकारी को इसकी सूचना प्रदान करें ।

सूचीपत्र

अध्याय	विषय	पृष्ठ	
प्रथम	$:$	ज्यामिति की आधारभूत अवधारणा	1
द्वितीय	$:$	त्रिभुज	20
तृतीय	$:$	चतुर्भुज	35
चतुर्थ	$:$	रचना	56
पंचम	$:$	परिमिति	70
		उत्तरमाला	124

ज्यामिति की आधारभूत अवधारणा (FUNDAMENTAL CONCEPTS OF GEOMETRY)

1.1 प्रारंभ Introduction :

Geometry शब्द दो ग्रीक शब्दों Geo (पृथ्वी) और Metron (माप) से बना है । ज्यामित शब्द में ज्या का अर्थ पृथ्वी और मिति का अर्थ माप है । जमीन मापने की जरूरत पड़ने पर ज्यामिति का जन्म हुआ है। मानव-सभ्यता के क्रमविकास के साथ ज्यामिति की भी अभिवृद्धि होती आई है ।

वैदिक युग में भारतीय ऋषि यजवुंड और पूजा-मंडप के निर्माण आदि कार्यों में विकसित ज्यामिति के ज्ञान का प्रयोग करते थे । प्राय ई.पू. 800 से ई.पू. 500 के बीच भारत में रचित 'शुल्व सूत्र' एक ज्यामिति-शास्त्र है । शुल्व अर्थात् रस्सी की मदद से माप के विभिन्न सूत्रों को लेकर यह शास्त्र समृद्ध हुआ है । महेंजोदाडो, हड़प्पा सभ्यता के खडंहरों और मीशरीय सभ्यता में ज्यामितीय नक्शे का व्यापक प्रयोग होने का प्रमाण मिलता है ।

प्रारंभिक स्थितियों में ज्यामिति के सिद्धांतों और सूत्रों का निर्धारण परीक्षण-निरीक्षण द्वारा होता था। अनुमान किया जाता है कि ग्रीक गणितज्ञ थालेस ने (ई.पू. 640-546) पहले ज्यामिति में तर्क शास्त्र का प्रयोग करके पहले से ज्ञात सूत्रों और सिद्धांतों की सत्यता का प्रमाण देने का प्रयास प्रारंभ किया था । बाद में उनके शिष्य पिथागोरस (ई.पू. 580-500) और उनके बाद शुकरात (ई.पू. (384-322) आदि ग्रीक विद्वानों ने इस धारा को आगे बढ़ाया था ।

लेकिन ई.पू. चौथी सदी में आलेकजंड्रिया (ग्रीस) के गणितज्र यूक्लीड (Euclid) अपने प्रसिध्य ग्रंथ Elements में दर्शाया कि ज्यामितीय सिद्धांत प्रत्येक एक-एक स्वतंत्र तथ्य नहीं हैं, थोड़े ही तथ्यों को स्वीकार करने से शेष सभी ज्यामितीय सिद्धांतों को इन स्वीकृत तथ्यों के परिणाम के रूप में

तर्क द्वारा प्रतिपादित किया जा सकेगा । पहले से स्वीवृत सिद्धातों की सहायता से तर्क द्वारा नए सिद्धांतों में पहुँचना संभव हुआ-इसलिए यूक्लीड यथार्थ रूप से ज्यामिति के जनक माने जाते हैं। उनके नाम के अनुसार विद्यालय हे जो ज्यामिति पढाई जाती है, उसे युक्लाडीय ज्यामिति (Euclidian geometry) कहा जाता है ।

परवर्ती समय में भारतीय गणितज्ञों में भास्कर (जन्म सन् 114 ई.) आर्यभट्ट (जन्म सन् 580 ई.) आदि ने ज्यामिति शास्त्र को समृद्ध किया था ।

1.2 अपरिभाषित पद और संबंधित आधार-तत्व

(undefined term and related postulates)

प्रत्येक विषय में कुछ विशेष प्रकार के शब्दों का एक निश्चित अर्थ में प्रयोग किया जाता है । उन्हें उस विषय से संबंधित पद (term) कहा जाता है । तुम विन्दु, रेखा, समतल के बारे में पिछली कक्षाओं में पढ चुके हो । इन तीनों पदों को आधारभूत पद या अपरिभाषित पदों (undefined term) वे रूप में स्वीकार करके, इन पदों और इनके आधार तत्वों की सहायता से नए पदों की परिभाषा ज्ञात की जा सकती है।

अब बिंदु, रेखा और समतल- इन पदों की फिर से चर्चा करेंगे ।
बिन्दु (Point) तुम एक ईंट लाओ । उसकी आकृति बनाकर नीचे जिस प्रकार दर्शाया गया हैं, उसी प्रकार नाम दो ।

आकृति : 1.1

एक ईंट के आठ शीर्ष होते हैं । $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$ प्रत्येक एक-एक बिंदु के सूचक हैं । उसी प्रकार $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}, \mathrm{DE}, \mathrm{EF}, \mathrm{HC}, \mathrm{HG}, \mathrm{GB}, \mathrm{AF}, \mathrm{EH}$ और GF ईंट के एक एक किनारे हैं ।

बताओ, ईंट के कितने सतह या पृष्ठ हैं ? इसके 6 समतलीय पृष्ठ होते हैं । वे पृष्ठ हैं ABCD , $\mathrm{EFGH}, \mathrm{ABGF} . \mathrm{CDEH}, \mathrm{ADEF}$ और BCHG । अब बताओ एक ईंट के कितने शीर्ष, कितने किनारे और कितने पृष्ठ या सतह हैं ?

रेखा या सरल रेखा (Line): आवृति (1.1) मैं ईंट के 12 किनारे हैं । प्रत्येक किनारा एक रेखा का एक भाग है तुम्हारी किताव का किनारा, कागज पर पेंसिल से खींची जाने वाली रे खा प्रत्येक एक-एक रेखा या सरलरेखा वे सीमित भाग का नमूना है । लेकिन सरलरेखा असीम रूप से दोनों ओर लंबी हो सकती है । इसका न तो प्रारंभ है न अंत । इसलिए हम एक दूसरी रेखा खींचकर इसके दोनों छोरों पर तीर का चिह्न देकर प्राप्त करेंगे उसके माध्यम से सरलरेखा की अवधारणा नीचे की आकृति पर ध्यान दो।

यह एक सरलरे खा की आवृतत है । इस सरलरेखा का नाम " L " है । इस सरलरेखा पर पेंसिल की नोक से अनेक बिंदु $\mathrm{A}, \mathrm{B}, \mathrm{C}$ आदि चिह्नित किए जा सकते हैं । इसे ध्यान में रखकर हम सरलरेखा और बिंदुओंके संबंध के बारे में एक बात स्वीकार कर लेंगे ।

आधार तत्व-1 : सरलरेखा बिंदुओं का समाहार या सेट है ।

कागज के पन्ने पर दो अलग-अलग बिंदु लो । स्केल के सरल किनारे को इन दो बिंदुओं से जोड़कर तुम पेंसिल से कितनी सरल रेखाएँ खींच सकोगे ? जॉच करके देखो । तुम्हें ज्ञात होगा कि ऐसी सिर्प एक ही रेखा खींची जा सकती है । अतः

आधार-तत्व-2 : दो अलग-अलग बिंदुओं को जोड़ने वाली केवल एक सरलरेखा हो सकती है।

दूसरे शब्दों में हम कह सकते हैं कि दो अलग-अलग बिन्दुओं से होकर सिर्पन एक ही सरलरेखा खींची जा सकती है ।

A और B, L सरलरेखा के दो अलगा-अलग बिंदु हैं तो हम सरलरेखा का नाम देंगे- $\overleftrightarrow{\mathrm{AB}}$ । (आवृति 1.2) को देखो । सेट की भाषा में हम कह सकते हैं :

$$
\mathrm{L}=\overleftrightarrow{\mathrm{AB}}=\overleftrightarrow{\mathrm{BA}}=\overleftrightarrow{\mathrm{AC}}=\overleftrightarrow{\mathrm{CA}}=\overleftrightarrow{\mathrm{BC}}=\overleftrightarrow{\mathrm{CB}}
$$

तीन या उनसे अधिक बिंदु यदि एक सरलरेखा में रहते हैं, तब उन्हें सरलरैखिक बिंदु या एकरेखीय बिंदु (Collinear Point) कहा जाता है ।

जो जो बिन्दु एक सरलरेखा में नहीं रहते, उन्हें बिना सरलरैखिक या नैक रेखीय बिंदु (noncollinear point) कहा जाता है ।

समतल (Plane): आकृति 1.1 में दी गई ईंट को देखो । इसके छह पृष्ठ या सतह हैं । प्रत्येक पृष्ट एक एक समतल के हिस्से का नमूना है । पक्के मकान का फर्श, श्यामपट का पृष्ट, कागज का पन्ना आदि समतलीय पृष्ठ हैं । हम जिस समतल की चर्चा करेंगे, वह कोई निश्चित सीमा से बंद नहीं है। समतल वे संबंध में हमारा प्रारंभिक आधार-तत्व हैं :

आधार तत्व-3 : समतल बिंदुओं का सेट है ।

एक समतल को कैसे पहचानेंगे या चिह्नित करेंगे ? एक रेखा को चिह्नित करने के लिए उसमें दो अलग अलग बिंदुओं की आवश्यकता है । उसी प्रकार समतल को चिह्नित करने के लिए कम-से-कम-उसमें तीन बिंदु होने चाहिए। आओ एक परीक्षा करेंगे ।

परीक्षा की प्रणाली - ऊपर की ओर नुकीली होने वाली दो तीलियाँ जमीन पर लंबित रूप से गाड़कर उनके ऊपर एक पोस्टकार्ड रखने का प्रयास करो । पोस्टकार्ड को सहारा न देने से वह वहाँ स्थिर रह नहों सकेगा । भिन्न-भिन्न स्थितियों में कार्ड रखने से, पोस्टकार्ड प्रत्येक स्थिति में तीलियों का ऊपर का हिस्सा छू लेगा।

पोस्टकार्ड समतल का सूचक है और तीलियों के ऊपर के नुकीले अंश दो बिंदुओं को सूचित करते हैं । अत: दो बिन्दुओं से होकर एक से अधिक समतल होने की सूचना मिलती है ।

अब उसी प्रकार तीनों तीलियों को जमीन में गाड़कर उनके नुकीले अंश पर पोस्टकार्ड रखो । यदि तीनों की नोकें एक सरलरेखा पर न होंगी, तो पोस्टकार्ड एक निश्चित स्थिति में रहेगा ।

फिर ध्यान दो कि तीलियों की नोकें यदि एक सरलरेखा में रह जाती हैं, तब पोस्टकार्ड भिन्न-भिन्न स्थितियों में भी तीलियों की नोकों को छूकर

आकृति: 1.3 रहेगा । यदि तीलियों की नोंवें एक सरलरेखा में नहीं रहेंगी, तब पोस्ट कार्ड को भिन्न-भिन्न स्थितियों में रखने पर भी वह दो तीलियों की नोकों को छूएगा, पर तीनों की नोकों को नहीं छूएगा ।

इस परीक्षा से प्राप्त तथ्य को समतल के एक धर्म के रूप में स्वीकार किया जाएगा ।

आधार तत्व-4: किन्हीं तीन नैकरेखीय बिंदुओं से होकर एक ही समतल रह सकता है ।

दूसरे शब्दों में कह सकते हैं-एक ही समतल में कम से कम तीन नैकरेखीय बिंदु रह सकते हैं ।
एक समतल का नाम उसी समतल में स्थित किन्हीं तीन नैकरेखीय बिन्दुओं की सहायता से दिया जाता है ।
आओ, और एक परीक्षा करेंगे :
एक धागे के दोनों छोरों को हाथ से तानकर रखो । इस स्थिति में धागा एक रेखांश की सूचना देता है । उसी प्रकार पकड़कर धागे के सिरे को एक समतलीय पृष्ठ (श्यामपट) पर दबाकर रखो । दूसरे सिरे को दूसरे हाथ से तानकर रखो । (आकृति: 1.4) को ध्यान से देखो ।

धागे का एक सिरा ' A ' समतल पृष्ठ को स्पर्श करता है । दूसरा
 सिरा ' B ', ऊपर की ओर उठकर रहा है । इस स्थिति में ' A ' सिरे के अलावा धागे का और कोई भाग समतल को स्पर्श नहीं करता है । अब धागे को इस स्थिति में तानकर रखकर इसके 'B' सिरे को धीरेधीरे समतल की ओर ले आओ । देखो, प्रत्येक स्थिति में ' A ' सिरे के अलावा धागे को कोई दूसरा भाग समतल पृष्ठ को छूता नहीं है । जब 'B' सिरा समतल पृष्ठ को स्पर्श करेगा, उस समय पूरा धागा पहले की तरह सीधा रहकर समतल पृष्ठ को स्पर्श करेगा ।

समतल पृष्ठ और सीधे तानकर रखे गए धागे-दोनों की असीम विस्तृति की कल्पना करके हम क्रमशः एक समतल और $\overleftrightarrow{\mathrm{AB}}$ सरलरेखा की अवधारणा प्राप्त कर सकेंगे । अतएव हमें इस परीक्षा से और एक विशेष गुण-धर्म का परिचय मिला । इसे भी हम एक आधार-तत्व के रूप में स्वीकार करेंगे ।
आधार-तत्व-५: एक समतल पर दो अलग-अलग बिन्दुओं को धारण करने वाली सरलरेखा उस समतल पर स्थित है ।
समतल का नाम ' P ' दो । समतल पर दोनों बिंदु A और B हों । आधार-तत्व के अनुसार $\stackrel{\mathrm{AB}}{\longrightarrow}, \mathrm{P}$ समतल पर स्थित है । अर्थात् सरलरेखा के सारे बिंदु ' P ' समतल पर स्थित हैं । इस कथन को सेट की भाषा में यों लिखा जा सकता है $: \overleftrightarrow{\mathrm{AB}} \subset \mathrm{P}$ है ।

1.3 समानांतर सरलरेखा (Paralled Lines)

एक समतल पर स्थित दो सरलरेखाओं के सामान्य बिंदु को उनका प्रतिच्छेद बिंदु (point of intersection) कहा जाता है । आकृति 1.5 में L_{1} और L_{2} सरलरे खाओं का प्रतिच्छेद बिंदु ' 0 ' है।

एक समतल पर स्थित दो सरलरेखाएँ परस्पर को प्रतिच्छेदन करें तो उन दोनों को समानांतर रेखा कहा जाता है । आकृति 1.6 में L_{1} और L_{2} दोनों सरलरेखाएँ परस्पर समानांतर हैं ।

(आकृति 1.6)

तुम बताओ :
(a) एक समतल पर स्थित दो सरलरेखाओं के ज्यादा से ज्यादा कितने प्रतिच्छेद बिन्दु रह सकेंगे ?
(b) एक समतल पर स्थित तीन सरलरेखाओं के कितने प्रतिच्छेद बिंदु रह सकेंगे ?
(c) एक समतल पर स्थित चार सरलरेखाओं के ज्यादा से ज्यादा कितने प्रतिच्छेद बिंदु रह सकेंगे ?
1.4 दो बिन्दुओं के बीच की दूरी, सरलरेखा और प्रावृत संख्या सेट के बीच संबंध

मान लो कि P और Q एक समतल पृष्ठ पर दो अलग-अलग बिंदु हैं । P और Q के बीच एक ही सरलरे खा खींचना संभव है और वह उस समतल पर रहेगा । P से Q तक की दूरी नापने के लिए हम प्राय: एक स्केल का व्यवहार करते हैं। P और Q के बीच की दूरी को किसी इकाई अर्थात् से.मी. की इकाई में व्यक्त करते हैं । स्वेल से नापकर हमने देखा कि P और Q के बीच की दूरी (मान लो) 5 से.मी. है । पर P और Q दोनों बिन्दु यदि अभिन्न होते हैं, तब P और Q के बीच की दूरी ' O ' होती है । एक बिंदु की अपने से दूरी किसी भी इकाई में शून्य ही होती है । याद रखो :

दूरी नापने के लिए प्रयुक्त संख्या सदैव एक धनात्मक प्राकृत संख्या होगी, पर यदि दोनों बिंदु अभिन्न होते हैं, तब दूरी ' O ' (शून्य) होती है । दूसरे तरीके से कहा जा सकता है- दूरी नापने वे लिए प्रयुक्त संख्या सदैव अ-ऋणात्मक प्राकृत संख्या, यानी शून्य या धनात्मक प्रावृत संख्या होगी ।

अब हमारा परवर्ती आधार-तत्व होगा: आवृति- 1.7

आधार तत्व-6: रूलार आधार-तत्व (Ruler Postulate): एक समतल पर स्थित बिंदु-युग्म एक-एक अ-ऋणात्मक प्रावृत संख्या से संबंधित हैं, जिसे दो बिंदुओं के बीच की दूरी कहा जाता है । दो बिंदुओं के बीच की दूरी पर निर्भर करके एक सरलरेखा के बिंदु-समूह और प्राकृत संख्या सेट के बीच एक विशेष प्रकार का संबंध संभव होता है ।

परिणाम स्वरूप :
(i) एक सरलरेखा वे बिंदु प्रत्येक एक-एक पूर्णांक से संबंधित है । अर्थात् प्रत्येक पूर्णांक इस सरल रेखा के ऊपर एक-एक निश्चित बिंदु से संबंधित है ।
(ii) सरल रेखा पर किन्हीं दो बिंदुओं की दूरी, उनसे संबंधित दोनों पूर्णांकों वे $\begin{array}{r} \\ \text { अंतर } \\ \text { वे }\end{array}$ परममान के बराबर होती है ।

टिप्पणी : P से Q तक की दूरी को PQ या QP संकेत से सूचित किया जाता है। एक प्रचलित एकक के द्वारा इसकी दूरी सूचित की जाती है । उदाहरण के रूप में $\mathrm{PQ}=5$ से.मी. या 0.05 मीटर है । P और Q बिंदुओं में दूरी जितनी है, Q और P के बीच की दूरी भी उतनी है । अतएव $\mathrm{PQ}=\mathrm{QP}$ है ।

1.4.1 आधार-तत्व की व्याख्या:

दूरी मापने के लिए एक निश्चित इकाई को (जैसे-मीली मीटर, सेंटीमीटर, मीटर या किलो मीटर) चुनना पड़ता है । ज्यामिति संबंधित पाठ में दूरी मापने के लिए हम सामान्यतः सेंटीमीटर इकाई का प्रयोग करते हैं । इसके लिए एक स्केल की सहायता लेते हैं । स्वेल का किनारा सीमित लंबाई का होता है । पर यदि एक असीम लंबाई की कल्पना की जाती है, और ऋणात्मक संख्याओं के साथ सभी पूर्णाकों का, बिंदु अंकित करने में प्रयोग किया जाता है, तब स्केल, नीचे जैसे दर्शाया गया है, उसी प्रकार का होगा ।

(आकृति 1.8)
आकृति में प्रदर्शित सरलरेखा पर पूर्णांकों से अंकित किए गए वुछछ बिंदुओं को रेखा खींचकर दर्शाया गया है । अन्य बिंदुओं को अन्य पूर्णांकों द्वारा दर्शाया गया है । जैसे:- P बिंदु पूर्णांक -1 और -2 के बीच 1.5 है । मोटे तौर पर कहा जा सकता है कि किसी सरलरेखा पर एक बिंदु वे लिए एक पूर्णांक है और एक पूर्णांक वे लिए एक बिंदु है ।

परिणाम-स्वरूप सरलरेखा एक असीम लंबाई वाले स्केल में बदल गई । हम जिस स्वेल का व्यवहार करते हैं, वह इसका एक सीमित भाग है । एक सरलरेखा के सभी बिंदुओं और पूर्णांक के सेट के बीच यह जो संबंध है, इसे एक-एक संबंध कहते हैं ।

1.4.2 दो बिन्दुओं के बीच की दूरी :

मान लो कि आकृति 1.8 में सरलरेखा के दो बिंदु हैं - P और Q । इन दो बिंदुओं से संबंधित पूर्णांक क्रमशः P और Q हैं ।

अतएव आधार-तत्व -6 के अनुसार P और Q के बीच की दूरी $\mathrm{PQ}=[\mathrm{p}-\mathrm{q}$ का परममान अर्थात् $|\mathrm{p}-\mathrm{q}|[\mathrm{p}-\mathrm{q}$ जब $\mathrm{p}>\mathrm{q}, \mathrm{q}-\mathrm{p}$ जब $\mathrm{q}>\mathrm{p}$ है]

जब P और Q बिंदुओं से संबंधित दोनों संख्याएँ क्रमशः -4 और 5 होंगी, तब
$P Q=|-4-5|=|-9|=9$ इकाई होगी ।
याद करो : x का परममान अर्थात् $|x|=x$, जब $=x$ धनात्मक पूर्णांक है ।

$$
\begin{equation*}
=\mathrm{x} \text {, जब } \mathrm{x} \text { ॠणात्मक पूर्णांक है । } \tag{6}
\end{equation*}
$$

याद रखो :
(i) सरलरेखा असंख्य बिंदुवाली होती है (क्योकीं पूर्णांक का सेट एक असीम सेट होता है ।
(ii) सरलरेखा के प्रारंभिक और अंतिम बिंदु नहीं होते । (क्योंकि सबसे बड़ा या सबसे छोटा पूर्णांक कौन है, यह बताना संभव नहीं है ।)
(iii) सरलरेखा निरवच्छिन्न रूप से परिव्याप्त है । (अर्थात् सरलरेखा पर दो बिंदुओं में कोई खाली स्थान नहीं होता ।

1.5 मध्यवर्तिता (Betweenness)

आकृति 1.9 को ध्यान से देखो ।
यदि तीन बिंदु A, B और C
(i) परस्पर से अलग है ।

(आवृति-1.9)
(ii) एक सरलरेखा पर रहते हैं,

और (iii) $\mathrm{AB}+\mathrm{BC}=\mathrm{AC}$ होता है, तब B को A और C के बीच की दूरी कहा जाता है ।
संकेत भाषा में इसे $\mathrm{A}-\mathrm{B}-\mathrm{C}$ या $\mathrm{C}-\mathrm{B}-\mathrm{A}$ लिखा जाता है । B बिंदु के अलावा A और C बिंदुओं के बीच असंख्य बीच के बिंदु हैं । इस मध्यवर्तीता संबंधी आधार-तत्व को पहले मरिज पाश्च (Moritz Pasch) प्रकाश में लाए थे ।
रेखाखंड (Line segment or Segment)
आकृति 1.9 में A और B दो अलग-अलग बिंदु हैं, A और B के मध्यवर्ती बिंदुओं को छोड़कर सरलरेखा की शेष सभी बिंदुओं को हटा दें, तो वह आवृति 1.10 (ii) की तरह दिखाई पड़ेगा । यह एक रेखाखंड है ।

(आवृतति 1.10 (i))

(आकृति 1.10 (ii))

परिभाषा- दो अलग-अलग बिंदु A और B हैं । उनके मध्यवर्ती बिंदुओं के सेट को " \mathbf{A} और \mathbf{B} द्वारा निरूपित रेखाखंड" कहा जाता है । इसे $\overline{\mathrm{AB}}$ के रूप में सूचित किया जाता है । सेट की परिभाषा में $\overline{\mathrm{AB}} \subset \stackrel{\leftrightarrow}{\mathrm{AB}}$ है ।

रेखाखंड के प्रांतबिंदु : A और B को $\overline{\mathrm{AB}}$ को प्रांतबिंदु कहा जाता है ।
याद रखो : $\overline{\mathrm{AB}}$ वे दोनों प्रांतबिदु A और B है, लेकिन $\overleftrightarrow{\mathrm{AB}}$ के कोई प्रांतबिंदु नहीं होते । रेखाखंड की लंबाई: किसी रेखाखंड के दोनों प्रांतबिंदुओं की दूरी को रेखाखंड की लंबाई कहा जाता है, अतएव $\overline{\mathrm{AB}}$ की लंबाई $=\mathrm{AB}$; अर्थात् प्रांतबिंदु A और B के बीच की दूरी है ।
रेखाखंड की लंबाई सदैव एक धनात्मक संख्या होती है $\overline{\mathrm{AB}}$ को AB रेखाखंड पढ़ा जाता है ।

रेखाखंड का मध्यबिंदु :

$\mathrm{M}, \overline{\mathrm{AB}}$ पर एक बिंदु है । $\mathrm{AM}=\mathrm{MB}$ हो तो M को $\overline{\mathrm{AB}}$ का मध्यबिंदु कहा जाता है । वहाँ $\mathrm{AM}=\mathrm{MB}=\frac{1}{2} \mathrm{AB}$ होता है । एक रेखाखंड का सिर्फ एक ही मध्यबिंदु होता है ।

रशिम (Ray): A और B दो अलग-अलग बिंदुओं द्वारा निरूपित सरलरेखा $\overleftrightarrow{\mathrm{AB}}$ है । $\overline{\mathrm{AB}}$ को AB रेखाखंड कहा जाता है ।

(आकृति 1.11)
AB रेखाखंड $(\overline{\mathrm{AB}})$ और AB रेखा पर स्थित B के परवर्ती सभी बिंदुओं के समाहार को AB रश्मि कहा जाता है । $\overrightarrow{\mathrm{AB}}$ रश्मि को सांकेतितक चिह्न $\overrightarrow{\mathrm{AB}}$ के रूप में लिखा जाता है । उसी प्रकार $(\overline{\mathrm{AB}})$ और AB रेखा में A के पूर्ववर्ती सभी बिंदुओं के समाहार को BA रश्मि $\overrightarrow{\mathrm{BA}}$ कहा जाता है । $\overrightarrow{\mathrm{AB}}$ को AB रश्मि के रूप में पढ़ा जाता है ।

$\overrightarrow{\mathrm{AB}}$ का शीर्ष बिंदु (vertex) A है और $\overrightarrow{\mathrm{BA}}$ का शीषर्षिंदु B है । एक रश्मि के शीर्षबिंदु को प्रारंभिक बिंदु (Initial Point) भी कहा जाता है । मान लो $\mathrm{A}-\mathrm{O}-\mathrm{B}$ अर्थात् O, A और B के बीच का बिंदु है ।

(आकृति 1.12(iii))
इस स्थिति में $\overrightarrow{\mathrm{OA}}$ और $\overrightarrow{\mathrm{OB}}$ को विपरीत रश्मि (Opposite Ray) कहा जाता है । $\overrightarrow{\mathrm{OA}} \cup \overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{AB}}$

खुद करो : अपनी कॉपी में तीन रश्मि $\overrightarrow{\mathrm{OA}}, \overrightarrow{\mathrm{OB}}$ और $\overrightarrow{\mathrm{OC}}$ खींचो, जैसे :
(a) कोई दो रश्मियाँ विपरीत रश्मि न होंगी ।
(b) दी गई रश्मियों में सें कोई दो रश्मियाँ परस्पर की विपरीत रश्मियाँ होंगी ।

दो रश्मियाँ एक सरलरेखा के हिस्से हों तो उन्हें एकरेखी या सरलरैखिक रश्मियाँ (Collinear rays) कहते हैं । दो रश्मियाँ सरलरैखिक न हों तो उन्हें नैकरेखी रश्मियाँ (non-collinear rays) कहते हैं ।

खुद करो

1.(a) अपनी कॉपी में तीन नैकरेखी बिंदु x, y, z चिह्नित करो और $\overline{x y}, \overrightarrow{y z}, \stackrel{\leftrightarrow}{x z}$ खींचो । (b) अपनी कॉपी में तीन नैकरेखी बिंन्दु A, B और C चिह्नित करो । $\overrightarrow{\mathrm{AB}} \overrightarrow{\mathrm{BC}}, \overrightarrow{\mathrm{CA}}$ खींचो ।

रेखाखंड, रश्मि और सरलरेखा में संबंध

आकृति 1.8 से यह स्पष्ट हुआ कि AB रेखाखंड के सभी बिंदु AB रश्मि में और AB रश्मि के सभी बिंदु AB सरलरेखा में हैं। अतएव सेट की भाषा में $\overline{\mathrm{AB}} \subset \overrightarrow{\mathrm{AB}} \subset \overleftrightarrow{\mathrm{AB}}$ है। उसी प्रकार $\overline{\mathrm{BA}} \subset \overrightarrow{\mathrm{BA}} \subset \stackrel{\leftrightarrow}{\mathrm{BA}}$ हेगा।

खुद करो : कौन सा किसका उपसेट है, लिखो ।
(a) $\overline{\mathrm{PQ}}$ और $\overrightarrow{\mathrm{PQ}}$
(b) $\stackrel{\leftrightarrow}{\mathrm{CD}}$ और $\overline{\mathrm{CD}}$
(c) $\overline{\mathrm{AB}}$ और $\overrightarrow{\mathrm{BA}}$
(b) A-P-B हो तो $\overleftrightarrow{A B}$ पर स्थित दो विपरीत रश्मियों के नाम लिखो ।

1.6 उत्तल सेट (Convex Set)

एक आयताकार कागज लो (आकृति 1.13)। मान लो, A और B इसमें दो बिंदु हैं। $\overline{\mathrm{AB}}$ खींचो । रेखाखंड पूरी तरह कागज के पृष्ठ पर रहता है । इसका अर्थ यह है कि $\overline{\mathrm{AB}}$ के सभी बिंदु कागज के पृष्ठ पर स्थित हैं । (आधार तत्व-5)। यदि हम कागज के पृष्ठ पर रहे बिंदुओं के सेट को ' S ' कहेंगे, तब $\overline{\mathrm{AB}}$ को S का एक उपसेट (Subset) कहेगें । सेट की भाषा में हम कह सकते हैं $\overline{\mathrm{AB}} \subset \mathrm{S}$ है ।

ध्यान दो कि A और B बिंदु दोनों को हम कागज के पृष्ठ के किसी भी स्थान पर लेने पर भी $\overline{\mathrm{AB}}$ पूरी तरह पृष्ठ के भीतर ही रहती है । इसका अर्थ है कि A और B कागज के पृष्ठ के कोई भी दो बिंदु होने पर भी उनकी संयोजक रेखाखड़ उसी कागज के पृष्ठ पर भी ही रहता है । अर्थात्

आकृति (1.13) $\overline{\mathrm{AB}} \subset \mathrm{S}$ है । यह सदैव सत्य है ।

अब कागज का पृष्ठ काटकर आवृति 1.14 में जैसे दिखाया गया है, उसी आकार का बनाओ । इस कटे हुए कागज के बिंदुओं से जो सेट बना, उसका नाम 'P' दो । कटे हुए कागज पर आवृति में जैसे दिखाया गया है वैसे दो बिंदु A और B लो । A और B का संयोजक रेखाखंड अर्थात् $\overline{\mathrm{AB}}$ पूरी तरह कटे हुए कागज के $\begin{gathered}\text { पृष्ठ पर रह सकता है । }\end{gathered}$

कटे हुए कागज के पृष्ठ पर, जैसे आवृतत में दिखाया गया है, वैसे और दो बिंदु C और D लो । C और D के संयोजक रेखाखंड को तुम कटे हुए कागज के पृष्ठ पर पूरी तरह खींची नहीं जा सकती । (खुद परीक्षा करके देखो।) इसका अर्थ है $\overline{\mathrm{CD}}$ के सभी बिंदु कटे हुए कागज पर नहीं हैं । सेट की भाषा में हम कह सकते हैं $\overline{\mathrm{CD}}, \mathrm{P}$ का उपसेट नहीं है। (याद

आवृति (1.14) करो : कटे हुए कागज के पृष्ठ के बिंदुओं को हमने ' P ' नाम दिया था ।

हम इस निर्णय पर पहुँचे कि A और B कोई भी दो बिंदु हों तो उनका संयोजक रेखाखंड सदैव कटे हुए कागज पर नहीं रह सकता । (सिर्प कुछ विशेष स्थितियों में $\overline{\mathrm{AB}}$ कटे कागज वे पृष्ठ पर रहता है । अतएव $\overline{\mathrm{AB}} \subset \mathrm{P}$, यह सदैव सत्य नहीं है ।

इस चर्चा से हमें पता चला कि बिंदुओं का सेट S (अर्थात् पहले लिए गए कागज के पृष्ठ के बिंदु समूह) ऐसे एक विशेष गुण-धर्म का अधिकारी है, जो दूसरे सेट P (कटे हुए कागज के पृष्ठ के बिंदु-समूह) में नहीं है । अतएव हम ' S ' सेट का एक स्वतंत्र नाम देंगे-उत्तल सेट ।

अब हम उत्तल सेट को परिभाषित करेंगे :
परिभाषा : सेट ' \mathbf{S} ' के कोई भी दो बिंदु A और \mathbf{B} हों, और $\overline{\mathrm{AB}} \subset \overline{\mathrm{S}}$ हो, तब S को एक उत्तल सेट कहा जाता है ।

परिभाषा के अनुसार P (कटे हुए कागज वे पृष्ठ पर बिंदु समूह) एक उत्तल सेट नहीं है । उत्तल सेट के और कई उदाहरण :

(i) सरल रेखा पर स्थित किन्हीं दो बिन्दुओं के लिए $\overline{\mathrm{AB}}$ भी L में शामिल है । अतएव सरलरेखा एक उत्तल सेट है ।
(ii) उसी प्रकार रश्मि, समतल आदि एक-एक उत्तल सेट हैं ।

तुम्हारे लिए क्रियाकलाप: नीचे दी गई आकृतियों में से कौन-सा उत्तल सेट है, दर्शाओ ।

उत्तल सेट संबंधी वुछछ तथ्य ! (i) दो उत्तल सेटों का प्रतिच्छेद भी एक उत्तल सेट है ।
(ii) दो उत्तल सेटों का संयोग एक उत्तल सेट नहों भी हो सकता है ।

1.7 सरलरेखा का पार्श्व Side of line

हम पार्श्व शब्द का प्रयोग किसी स्थिति का वर्णन करने के लिए करते हैं । पार्श्व संबंधी अवधारणा को ज्यामिति में व्यवहार करने के लिए हमें और एक आधार-तत्व की जरूरत है। आओ, परीक्षा करके देखें ।

एक पृष्ठ में एक सरलरेखा L खींचों । बगल की आकृति को देखो । उस आकृति में जो-जो बिंदु L सरलरेखा पर नहीं हैं, उन्हें हम दो सेट C_{1}

(आवृति-1.17) और C_{2} में शामिल कर सकते हैं ।

तुम परीक्षा करवे जान सकोगे कि C_{1} और C_{2} दो उत्तल सेट (Convex Set) हैं ।
अब इस कागज के पृष्ठ पर कोई भी दो बिंदु A और B ऐसे लो, जैसे कि A बिंदु C_{1} सेट में और B बिंदु C_{2} सेट में रहेगा। A और B दोनों बिंदुओं का संयोजन करने वाला AB रेखाखंड $\overline{\mathrm{AB}}$ खींचो । तुम देख सकोगे कि AB, L को प्रतिच्छेद करता है । L सरलरेखा और AB रेखाखंड दोनों का साधारण बिंदु ' O ' को उनका प्रतिच्छेद बिंदु (Intersecting Point) कहा जाता है ।

आधार तत्व 7: समतल विभाजन (Plane Separation) :
मान लो कि L सरलरेखा P समतल पर स्थित है । समतल के जो जो बिंदु L सरलरेखा पर नहीं हैं, वे दो सेट $\left(\mathrm{C}_{1}\right.$ और $\left.\mathrm{C}_{2}\right)$ में शामिल होते हैं। और
(i) C_{1} और C_{2} प्रत्येक एक एक उत्तल सेट हैं ।
(ii) दो अलग-अलग बिंदु A और B क्रमश: C_{1} और C_{2} सेट में रहने से $\overline{\mathrm{AB}}, \mathrm{L}$ सरलरेखा को प्रतिच्छेद करता है।

ऊपर वे आधार - तत्व से यह स्पष्ट है कि :
(1) (i) C_{1} और C_{2} प्रत्येक एक-एक बिना शून्य के सेट हैं ।
(ii) C_{1} और C_{2} दो बिना प्रतिच्छेदो सेट हैं । अर्थात् कोई एक बिंदु दोनों C_{1} और C_{2} में रह नहीं सकता ।
(2) आधार-तत्व 7 को लेकर प्रमाण किया जा सकता है कि एक समतल में असंख्य बिंदु निरवच्छिन्न रूप से रहते हैं। अर्थात् सरलरेखा की तरह समतल में भी कोई खाली स्थान नहीं है । समतल के किसी भी बिंदु से होकर असंख्या सरलरेखाएँ और रश्मियाँ रहती हैं ।

सरलरेखा का पार्श्व / किनारा

किसी सरलरेखा के एक पार्श्व का नामकरण उसी पाश्श्व के किसी भी बिंदु को लेकर किया जा सकता है। L सरलरेखा के जिस पार्श्व में A बिंदु है, उसे L सरलरेखा का A पार्श्व और जिस पार्श्व से B बिंदु है, उसे L सरलरेखा का ' B ' पार्श्व कहा जाता है ।

नोट : $\overline{\mathrm{AB}}$ रेखाखंड या $\overrightarrow{\mathrm{AB}}$ रश्मि के दोनो पार्श्व कहने से हम $\overleftrightarrow{\mathrm{AB}}$ सरलरेखा के दोनों पार्श्वों ही लेते हैं ।

अभ्यास- 1(a)

1. प्रत्येक प्रश्न के बगल में कुछ संभाव्य उत्तर दिए गए हैं । सही उत्तर चुनकर शून्यस्थान भरो :
(i) एक सरलरेखा में \qquad बिंदु होते हैं ।
(a) एक
(b) दो
(c) असंख्य
(ii) एक रेखाखंड के \qquad प्रांतविंदु होते हैं ।
(a) एक
(b) दो
(c) असंख्य
(iii) एक रेखाखंड का \qquad मध्यविंदु होता है ।
(a) एक
(b) दो
(c) असंख्य
(iv) एक रश्मि का \qquad प्रारंभिक बिंदु होता है ।
(a) एक
(b) दो
(c) असंख्य
2. निम्न उक्तियाँ अगर सही हों तो घेरे में \checkmark निशान और गलत हो तो x निशान लगाओ ।
(i) एक सरलरेखा के असंख्या प्रांतबिंदु होते हैं ।
(ii) एक रश्मि का एक प्रारंभिक बिंदु होता है ।
\square
(iii) एक रेखाखंड का सिर्प एक मध्यविंदु होता है।
(iv) A और B के मध्यवर्ती बिंदु P हो, तो यह $\overline{\mathrm{AB}}$ का मध्यबिंदु होगा । \square
(v) दो अलग-अलग बिंदुओं का सिर्प एक मध्यबिंदु होता है ।

(vi) A, B और C एकरेखी बिंदु हों तो $\overrightarrow{\mathrm{AB}}$ और $\overrightarrow{\mathrm{BC}}$ एकरेखी रश्मियाँ होती हैं ।

(vii) $\overleftrightarrow{\mathrm{AB}}$ के A और B के बीच का बिंदु ' O ' है, तब $\overrightarrow{\mathrm{OA}}$ और $\overrightarrow{\mathrm{OB}}$ दोनों परस्पर की विपरीत रश्मियाँ हैं।

3. (a) परस्पर से भिन्न चार बिंदुओं में से कोई तीन बिंदु एक सरलरेखा में न हों, तो उनसे कितने रेखाखंड निरूपित हो सकेंगे ।
(b) परस्पर से भिन्न चार बिंदुओं में से कोई तीन बिंदु एक रेखी होने से उनके द्वारा कितने सरलरेखाएँ निरूपित हो सकेंगी ?
4. A, B और C एकरेखी बिंदु हैं । $\mathrm{AB}=8$ इकाई है, $\mathrm{AC}=4$ इकाई है, तब निम्न में से कौन सा
संभव है:
(a) B-A-C
(b) $\mathrm{A}-\mathrm{C}-\mathrm{B}$
(c) $\mathrm{A}-\mathrm{B}-\mathrm{C}$
5. उभयनिष्ठ शीर्षबिंदुवाली सात रश्मियाँ दी गई हैं, उनमें ज्यादा-से ज्यादा कितने युग्म विपरीत रश्मियाँ रह सकेंगी ।
6. दिए गय पदों की परिभाषाएँ दो : (a) सरलरेखा का पार्श्व (b) उत्तल सेट

1.8 कोण (Angle)

परिभाषा : तीन अलग-अलग बिंदु A, B और C यदि एक सरलरेखा पर स्थित नहों होंगे, तब $\overrightarrow{\mathrm{BA}}$ और $\overrightarrow{\mathrm{BC}}$ रश्मियों के संयोग (union) को एक कोण कहा जाता है (आकृति 1.8) इसे $\angle \mathrm{ABC}$ संकेत से लिखा जाता है और ABC कोण पढ़ा जाता है । सेट की परिभाषा में $\angle \mathrm{ABC}=\overrightarrow{\mathrm{BA}} \cup \overrightarrow{\mathrm{BC}}$

सूचना : (i) A, B और C नैकरेखा बिंदु हैं । वे एक निश्चित समतल $A B C$ पर स्थित हैं । अतएव $\angle \mathrm{ABC}$ भी एक समतल पर स्थित है ।
(ii) B बिंदु को $\angle \mathrm{ABC}$ का शीर्षबिंदु कहा जाता है। $\overrightarrow{\mathrm{BA}}$ और $\overrightarrow{\mathrm{BC}}$ रश्मि-दोनों को $\angle \mathrm{ABC}$ की भुजाएँ कहा जाता है।

खुद करो : A, B और C एक सरलरेखा पर स्थित न होने वाले तीन बिंदु हैं । नीचे प्रत्येक रश्मि के संयोग की ज्यामितिक आकृति का नामकरण करो ।
(1) $\overrightarrow{\mathrm{AB}}$ और $\overrightarrow{\mathrm{AC}}$
(2) $\overrightarrow{\mathrm{BA}}$ और $\overrightarrow{\mathrm{BC}}$
(3) $\overrightarrow{\mathrm{CB}}$ और $\overrightarrow{\mathrm{CA}}$
(4) $\overrightarrow{\mathrm{AB}}$ और $\overrightarrow{\mathrm{BA}}$
(5) $\overrightarrow{\mathrm{BC}}$ और $\overrightarrow{\mathrm{CB}}$
(6) $\overrightarrow{\mathrm{AC}}$ और $\overrightarrow{\mathrm{CA}}$
2. (a) $\angle \mathrm{PQR}$ के शीर्षबिंदु का नाम लिखो ।
(b) $\angle \mathrm{ABC}$ की कितनी भुजाएँ हैं ? उनवे नाम लिखो ।
(c) $\overrightarrow{\mathrm{AB}}$ और $\overrightarrow{\mathrm{AC}}$ परस्पर विपरीत रश्मियाँ हैं । $\overrightarrow{\mathrm{AB}}$ और $\overrightarrow{\mathrm{AC}}$ के संयोग से क्या उत्पन्न होगा ?
(d) A शीर्ष और $\overrightarrow{\mathrm{AB}}$ तथा $\overrightarrow{\mathrm{AC}}$ भुजाओं वाले कोण का नाम क्या होगा ?

1.8.1 कोण का अन्तःभाग और वर्हिभाग (Interior \& Exterior of an angle)

आवृति 1.19 में $\angle \mathrm{ABC}$ खिंचा गया है । यह ABC समतल वे 亏 जो जो बिंदु $\overrightarrow{\mathrm{BC}}$ के A पार्श्व $\overrightarrow{\mathrm{BA}}$ के C पार्श्व पर स्थित हैं, उन बिंदुओं को लेकर कोण का अन्त: भाग निर्मित है। अर्थात् उन बिंदुओं का सेट है $\angle \mathrm{ABC}$ का अन्त:भाग । इसे रश्मियों के प्रतिच्छेद द्वारा चिह्नित किया गया है । बगल की आकृति को देखो ।

ABC के समतल के जो जो बिंदु $\angle \mathrm{ABC}$ के अन्त: भाग में नहीं है, या $\overrightarrow{\mathrm{BA}}$ या $\overrightarrow{\mathrm{BC}}$ रश्मि पर नहीं हैं, उन बिंदुओं के सेट
 को $\angle \mathrm{ABC}$ का बहिर्भाग कहा जाता है ।

टिप्पणी: (i) उत्तल सेट की परिभाषा के अनुसार कोण का अन्त:भाग एक उत्तल सेट है, पर बहिर्भाग नहीं है,
(ii) कोण स्वयं उत्तल सेट नहीं हैं ।
(iii) $\angle \mathrm{ABC}, \angle \mathrm{ABC}$ का अन्त:भाग और $\angle \mathrm{ABC}$ का बहिर्भाग - ये तीन सेट परस्पर बिना प्रतिच्छेद वाले (Mutually disjoint) है । अर्थात उनमें से किन्ही दो सेटों के बीच उभयनिष्ठ बिंदु नहीं है ।

खुद्यो करो बगल की आकृति को देखकर $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{U}, \mathrm{V}$ बिंदुओं में से $\angle \mathrm{ABC}$ के ऊपर के亏, अन्त:भाग के और बहिर्भाग वे बिन्दुओं के न नाम नीचे की सारणी में भरो:

सारणी : 1.1

1.8.2 कोण का माप (Measure of an angle)

$\mathrm{m} \angle \mathrm{ABC}, \angle \mathrm{ABC}$ कोण का परिमाण है, जो एक प्रावृत संख्या है, पर $\angle \mathrm{ABC}$, बिंदुओं का सेट है ।

एक कोण का परिमाण जानने के लिए चाँद का व्यवहार किया जाता है । उसे तुम पिछली कक्षा में पढ़ चुवेว हो । चाँद की सहायता से दी गई माप वे अनुसार कैने एक कोण खींचा जा सकता है, उसे भी जान चुके हो ।

(सारणी 1.21)
चॉद की सहायता से कोण को मापने और कोण खींचने की अवधारणा से हम निम्न लिखित आधार-तत्व स्वीकार करेंगे ।

आधार-तत्व-8 : चाँद का आधार-तत्व (Protractor Postulate)
प्रत्येक कोण के साथ ' 0 ' से बड़ी और 180 से छोटी एक निश्चित प्राकृत संख्या संबंधित है । उसे कोण का परिमाण कहा जाता है। $\mathrm{m} \angle \mathrm{ABC}$ ऐसे निरूपित होता है, जैसे :
(i) 0 से बड़ी और 180 से छोटी किसी भी प्रावृत संख्या x के लिए ABC समतल पर $\overrightarrow{\mathrm{BC}}$ के किसी भी एक पार्श्व में व्याप्त एक ही रश्मि $\overrightarrow{\mathrm{BM}}$ स्थित है, जैसे कि $\mathrm{m} \angle \mathrm{MBC}=x$ होगा।
(सामान्यत $\mathrm{m} \angle \mathrm{ABC}=x^{\circ}$, ऐसे लिखा जाता है ।)
(ii) $\angle \mathrm{ABC}$ के अन्त: भाग में ' P ' .कोई भी बिंदु है ।
$\mathrm{m} \angle \mathrm{ABC}=\mathrm{m} \angle \mathrm{ABP}+\mathrm{m} \angle \mathrm{PBC}$ होगा ।

टिप्पणी : चाँद की सहायता से :

1.(i) कोण के परिमाण को 0 से बड़ा और 180 से छोटा स्वीकार करने से मिले परिमाण को कोण की डिग्री-माप (अंश-माप) कहा जाता है । संबंधित चाँद को अंश-चाँद कहा जाता है । इस चाँद से $\angle \mathrm{ABC}$ का परिमाण x हो तो हम लिखते हैं: $\mathrm{m} \angle \mathrm{ABC}=x^{\circ}$ (x डिग्री) अंश इकाई को और भी छोटी इकाई में व्यक्त किया जाता है, जैसे
$1^{\circ}=60$ मिनट, 1 मिनट $=60$ सेवंड संक्षेप में हम लिखते हैं: $1^{\circ}=60^{\prime}$ और $1^{\prime}=60^{\prime \prime}$
(ii) कोण के परिमाण को 0 से बड़ा और π (Pai) (पाई) से छोटा स्वीकार करने पर मिले परिमाण को ‘रेडियान माप’ कहते हैं।
π रेडियान $=180$ अंश
(π एक अपरिमेय संख्या है, इसका आसन्न मान है 3.1415)
२. एकाधिक कोणों का परिमाण जोड़ने से वह 180° से अधिक हो सकता है, पर हमारी चर्चा की सीमा है कि किसी भी कोण का परिमाण 0° से 180° के बीच होगा ।
1.8.3 कोण का समद्धिभाजक (Angle Bisector): $\angle \mathrm{ABC}$ के अन्त:भाग में ' P ' बिंदु स्थित है। जब $\mathrm{m} \angle \mathrm{ABP}=\mathrm{m} \angle \mathrm{PBC}$ है, तब $\overrightarrow{\mathrm{BP}}$ को $\angle \mathrm{ABC}$ का समद्विभाजक कहा जाता है ।

यहाँ $\mathrm{m} \angle \mathrm{ABP}=\mathrm{m} \angle \mathrm{PBC}=\frac{1}{2} \mathrm{~m} \angle \mathrm{ABC}$
1.9 विविध प्रकार के कोण (Different types of angles): (A) परिमाण के आधार पर कोणों का प्रकार-भेद
 एक कोण का परिमाण
(i) 90° से कम हो, तो उसे न्यून कोण (acute angle) कहा जाता है ।
(ii) 90° के बराबर होने पर उसे समान कोण (right angle) कहा जाता है ।
(iii) 90° से अधिक होने पर उसे अधिक कोण (obtuse angle) कहा जाता है । खुद करो : आकृति 1.23 में दिए गए कोणों का परिमाण चाँद की सहायता से मापकर दी गई सारणी में कोण की माप और वह किस प्रकार का कोण है, लिखो :

(आवृति 1.23)

कोण	(1)	(2)	(3)	(4)
कोण की माप				
किसी प्रकार का कोण				

सारणी : 1.2
(B) दो कोणों में संबंध
(i) दो कोणों के परिमाण का योगफल 90° हो तो उन्हें परस्पर का पूरक या लंबपूरक कोण (complementary) कोण कहा जाता है ।
उदाहरण के रूप में : $20^{\circ}, 30^{\circ}, 63^{\circ}$ परिमाण वाले कोणों के पूरक कोणों का परिमाण क्रमशः $70^{\circ}, 60^{\circ}$ और 27° होगा ।
उसी प्रकार किसी कोण का परिमाण x° हो तो उसके पूरक कोण का परिमाण $(90-x)^{\circ}$ होगा ।
(ii) दो कोणों के परिमाण का योगफल 180° हो तो उन्हें परस्पर का संपूरक या ऋजुपूरक कोण (Supplementary) कहा जाता है ।

उदाहरण के रूप में $27^{\circ}, 60^{\circ}, 135^{\circ}$ और x° परिमाण वाले कोणों वे संपूरक कोणों का परिमाण क्रमशः $153^{\circ}, 120^{\circ}, 45^{\circ}$ और $(180-x)^{\circ}$ होगा ।

याद रखो : सिर्पح न्यून कोण का पूरक कोण होता है, पर प्रत्येक कोण का संपूरक कोण होता है ।

तुम्हारे लिए गति-विधियाँ नीचे की सारणी में कुछ कोणों के नाम और उनका परिमाण दिए गए हैं। कोणों के पूरक और संपूरक कोणों का परिमाण ज्ञात करके सारणी भरो । उत्तर संभव न होने की स्थिति में ' x ' निशान लगाओ ।

कोण	कोण का परिमाण	पूरककोण का परिमाण	संपूरक कोण का परिमाण
$\angle \mathrm{ABC}$	25^{0}		
$\angle \mathrm{PQR}$	68^{0}		
$\angle \mathrm{CDE}$	90^{0}		
$\angle \mathrm{EFG}$	168^{0}		

सारणी- 1.3
(c) आसन्न कोण (Adjacent Angle)

आकृति $1.24(a)$ और (b) को ध्यान से देखो :
(i) $\angle \mathrm{ABD}$ और $\angle \mathrm{CBD}$ की अभयनिष्ठ शीषबिंदु B है और उभयनिष्ठ भुजा $\overrightarrow{\mathrm{BD}}$ है ।
(ii) $\angle \mathrm{ABD}$ और $\angle \mathrm{CBD}$ के अंतभाग दोनों का कोई उभयनिष्ठ विंदु नहीं है । अर्थात् वे बिना प्रतिच्छेदी सेट हैं ।

(a)

(c)
(आवृति 1.24)
ऐसे स्थान पर $\angle \mathrm{ABD}$ और $\angle \mathrm{CBD}$ को आसन्र कोण कहा जाता है । आसन्न कोण दोनों की उभयनिष्ठ भुजा $\overrightarrow{\mathrm{BD}}$ और अन्य दो भुजाएँ $\overrightarrow{\mathrm{BA}}$ और $\overrightarrow{\mathrm{BC}}$ को उनका बहिर्भाग की भुजा (exterior side) कहा जाता है ।
याद रखो : दो कोण आसन्न होने पर उनका (i) एक उभयनिष्ठ शीर्ष बिंदु होता है ।
(ii) एक उभयनिष्ठ भुजा होती है ।
(iii) उनका अन्त: भाग दोनों प्रतिच्छेदी नहीं होते ।

सूचना : दो आसन्न कोणों के परिमाण का योगफल 180° हो तो उन्हें आसन्न संपूरक कोण (Adjacent Supplementary Angle) कहा जाता है ।

आवृति $1.24(\mathrm{c})$ में $\angle \mathrm{ABD}$ और $\angle \mathrm{CBD}$ का B उभयनिष्ठ शीर्ष बिंदु हैं । $\overrightarrow{\mathrm{BD}}$ उभयनिष्ठ भुजा है । दोनोंकोणों का अन्त:भाग बिना प्रतिच्छेदीवाला नहीं है। अतएव $\angle \mathrm{ABD}$ और $\angle \mathrm{CBD}$ आसन्न कोण नहीं हैं, पर यहँ $\angle \mathrm{ABD}$ और $\angle \mathrm{ABC}$ आसत्र हैं । क्यों ?

खुद करो : बगल की आवृति 1.25 को देखकर उत्तर दो:

(आवृति 1.25)
(i) $\overrightarrow{\mathrm{AC}}$ उभयनिष्ठ भुजावाले दो युग्म जोड़े आसन्न कोणों के नाम लिखो
(ii) $\overrightarrow{\mathrm{AD}}$ अभयनिष्ठ भुजावाले दो-युग्म आसन्न कोणों के नाम लिखो । (D) विपरीत कोण (Vertically Opposite Angles)

आकृति 1.26 में $\overleftrightarrow{\mathrm{AB}}$ और $\overleftrightarrow{\mathrm{CD}}$ परस्पर को ' O ' बिंदु में प्रतिच्छेद करती हैं। इससे चार कोण उत्पन्न हुए हैं ।

यहाँ $\angle \mathrm{AOC}$ और $\angle \mathrm{BOD}$ को परस्पर का विपरीत कोण कहा जाता है । उसी प्रकार $\angle \mathrm{BOC}$ और $\angle \mathrm{DOA}$ को भी परस्पर का विपरीत कोण

(आवृति 1.26) कहा जाता है ।

खुद करो: $\overleftrightarrow{\mathrm{AB}}$ और $\overleftrightarrow{\mathrm{CD}}$ परस्पर को ' O ' बिन्दु में प्रतिच्छेद करने वाली तीन अलग-अलग आवृतियाँ बनाओ । दो युग्म विपरीत कोणो को चाँद की सहायता से मापकर सारणी भरो :

आवृति नं	$\mathrm{m} \angle \mathrm{AOC}$	$\mathrm{m} \angle \mathrm{BOD}$	$\mathrm{m} \angle \mathrm{BOC}$	$\mathrm{m} \angle \mathrm{AOD}$
1				
2				
3				

सारणी- 1.4
इस सारणी से क्या ज्ञात हुआ, लिखो ।

> अभ्यास - 1(b)

1. शून्य स्थान भरो :

(a) एक कोण वे भुजा-द्वय का \qquad प्रतिच्छेद बिंदु होता है ।
(b) एक कोण के भुजा-द्वय के प्रतिच्छेद बिंदु को कोण का \qquad बिंदु कहा जाता है ।
(c) उभयनिष्ठ शीर्ष बिंदु और एक उभयनिष्ठ भुजावाले दो कोणों के अन्त:भाग द्वय जब बिना प्रतिच्छेदवाले होते हैं, तब दोनों कोणों को \qquad कोण कहा जाता है ।
(d) A-P-B और $\overrightarrow{\mathrm{PQ}}$ तथा $\overleftrightarrow{\mathrm{AB}}$ का एक ही उभयनिष्ठ बिंदु ' P ' हो तो उत्पन्न कोण-द्वूय के नाम \qquad और \qquad हैं ।
(e) $\overrightarrow{\mathrm{PQ}}$ और $\overleftrightarrow{\mathrm{AB}}$ का एक ही उभयनिष्ठ बिंदु P है। गठित दोनों कोणों को \qquad संपूरक कोण कहा जाता है ।
(f) $\overrightarrow{\mathrm{OA}}$ और $\overrightarrow{\mathrm{OC}}$ की विपरीत रशिमयाँ क्रमशः $\overrightarrow{\mathrm{OB}}$ और $\overrightarrow{\mathrm{OD}}$ हैं, तब
(1) $\angle \mathrm{AOC}$ का विपरीत कोण \qquad है।
(2) $\angle \mathrm{BOC}$ का विपरीत कोण \qquad है
2. शून्यस्थान भरिए:
(a) π रेडियान $=$ \qquad अंश (डिग्री) है।
(b) एक अंश $=$ \qquad मिनट है।
(c) एक मिनट = \qquad सेकंड है।
(d) π का आसत्र मान $=$ \qquad है।
(e) x° परिमाणवाले कोण के पूरक कोण का परिमाण \qquad है ।
(f) x° परिमाणवाले कोण के संपूरककोण का परिमाण \qquad है।
(g) x° परिमाणवाले कोण के आसत्र संपूरक कोण का परिमाण \qquad है ।
3. एक समतल में खींचा गया $\angle \mathrm{ABC}$, उस समतल को कितने उपसेट में बाँटता है ? उनके नाम लिखो ।
4. (a) एक कोण का परिमाण उसके पूरक कोण के परिमाण के बराबर है । कोण की माप ज्ञात करो।
(b) एक कोण का परिमाण उसके पूरक कोण के परिमाण के दो गुने से 15° कम है । उसकी माप ज्ञात करो ।
(c) जिस कोण का परिमाण उसके संपूरक कोण के परिमाण के साथ समान है, उसका परिमाण ज्ञात करो ।
(d) एक कोण का परिमाण उसके संपूरक कोण के परिमाण के 3 गुने से 20° कम है । इसका परिमाण ज्ञात करो।
5. बुछ कोणों के परिमाण दिए गए हैं। उन्हें देखकर निम्न उक्तियों के शून्य-स्थन भरो: $\mathrm{m} \angle \mathrm{A}=63^{\circ}, \mathrm{m} \angle \mathrm{B}=127^{\circ}, \mathrm{m} \angle \mathrm{C}=147^{\circ}, \mathrm{m} \angle \mathrm{D}=53^{\circ}, \mathrm{m} \angle \mathrm{E}=95^{\circ}$, $\mathrm{m} \angle \mathrm{F}=117^{\circ}, \mathrm{m} \angle \mathrm{G}=85^{\circ}, \mathrm{m} \angle \mathrm{H}=33^{\circ}$ हो तो,
(i) $\angle \mathrm{A}$ और \qquad परस्पर संपूरक हैं।
(ii) $\angle \mathrm{H}$ और \qquad परस्पर संपूरक हैं ।
(iii) \qquad और $\angle \mathrm{D}$ परस्पर संपूरक हैं।(iv) \qquad और $\angle \mathrm{G}$ परस्पर संपूरक हैं ।
6. आकृति 1.27 देखकर उत्तर दो :

(आवृति 1.27)
आकृति (a) में (i) $\mathrm{m} \angle \mathrm{ABP}=22^{\circ}, \mathrm{m} \angle \mathrm{PBC}=38^{\circ}$ है तब $\mathrm{m} \angle \mathrm{ABC}$ का परिमाण ज्ञात करो ।
(ii) $\mathrm{m} \angle \mathrm{ABC}=58^{\circ}, \overrightarrow{\mathrm{BP}}, \angle \mathrm{ABC}$ का समद्विभाजक है, $\mathrm{m} \angle \mathrm{PBC}$ का परिमाण ज्ञात करो ।
आवृति (b) में $\mathrm{m} \angle \mathrm{AOB}=117^{\circ}$ और $\mathrm{m} \angle \mathrm{AOP}=\mathrm{m} \angle \mathrm{POQ}=\mathrm{m} \angle \mathrm{QOB}$ हों, तो $\mathrm{m} \angle \mathrm{POQ}$, $\mathrm{m} \angle \mathrm{AOQ}$, और $\mathrm{m} \angle \mathrm{POB}$ के परिमाण ज्ञात करो ।
7. आवृति बनाकर निम्न पदों को स्पष्ट करो:
(a) विपरीत कोण, (b) आसन्न कोण, (c) आसन्न संपूरक कोण
8. किसे कहते हैं ? स्पष्ट करो :
(a) पूरक और संपूरक कोण, (b) कोण का अन्त: भाग और बहिर्भाग
9. $\overrightarrow{\mathrm{OC}}$ और $\overleftrightarrow{\mathrm{AB}}$ का एक ही उभयनिष्ठ बिंदु ' O ' है ।

जब
(i) $\mathrm{m} \angle \mathrm{AOC}=2 x^{\circ}, \mathrm{m} \angle \mathrm{BOC}=3 x^{\circ}$ और
(ii) $\mathrm{m} \angle \mathrm{AOC}=(x+20)^{\circ}, \mathrm{m} \angle \mathrm{BOC}=(3 x-8)^{\circ}$ हैं, तब x का मान प्रत्येक स्थिति में ज्ञात करो ।
10. बगल की आवृति से y का मान ज्ञात करो,

जब

$$
\begin{aligned}
& \mathrm{m} \angle \mathrm{AOE}=2 \mathrm{y}^{\circ} \\
& \mathrm{m} \angle \mathrm{DOE}=3 \mathrm{y}^{\circ} \\
& \mathrm{m} \angle \mathrm{BOC}=5 \mathrm{y}^{\circ} \text { हों । }
\end{aligned}
$$

(आवृति 1.28)

त्रिभुज (TRIANGLE)

अध्याय 2

2.1. त्रिभुज, त्रिभुज का शीर्ष बिंदु,भुजा और कोण

एक सरलरेखा में न रहने वाले तीन बिंदुओं से कोण बनने की बात पहले से चर्चा हो चुकी है। अब एक सरलरेखा में न रहने वाले तीन बिंदुओं से कैसे अलग एक आकृति बनाई जा सकती है, उस पर चर्चा करेंगे ।
A, B और C , तीन बिंदु एक सरलरेखा में न रहने से हम A और B बिदु दोनों को लेकर $\overline{\mathrm{AB}}$ (रेखा खंड AB) खींच सकते हैं । उसी प्रकार B और C बिन्दु दोनों को लेकर $\overline{\mathrm{BC}}$ (रेखाखडों BC) तथा C और A बिंदु, दोनों को लेकर $\overline{\mathrm{CA}}$ (रेखाखंड) खींच सकते हैं । इन तीन रेखाखडों से बनी आकृति है ABC त्रिभुज । (आकृति 2.1 देखो)

(आकृति 2.1) परिभाषा :

तिन बिंदु A, B और C एक सरलरेखा में न रहने से $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}$ और $\overline{\mathrm{CA}}$ इन तीनों सेटों के संयोग को ABC त्रिभुज कहा जाता है । इसे संकेत में $\triangle \mathrm{ABC}$ (या $\mathrm{ABC} \Delta$) के रूप में लिखा जाता है ।
$\overline{\mathrm{AB}}, \overline{\mathrm{BC}}$ और $\overline{\mathrm{CA}}$ प्रत्येक विंदुओं का सेट हैं। अतएव उससे बना त्रिभुज भी विंदुओं का सेट है । सेट की परिभाषा में हम लिख सकते हैं। $\triangle \mathrm{ABC}=\overline{\mathrm{AB}} \cup \overline{\mathrm{BC}} \cup \overline{\mathrm{CA}}$
A, B और C तीनों बिंदुओं को $\triangle \mathrm{ABC}$ के शीर्षबिंदु (Vertex) कहा जाता है $!\overline{\mathrm{AB}}, \overline{\mathrm{BC}}$ और $\overline{\mathrm{CA}}$ को $\triangle \mathrm{ABC}$ की एक एक भुजा (Side) कहा जाता है । $\angle \mathrm{ABC}, \angle \mathrm{BCA}$ और $\angle \mathrm{CAB}$ को $\triangle \mathrm{ABC}$ का एक एक कोण (Angle) कहा जाता है । संक्षेप में इन्हें $\angle \mathrm{B}, \angle \mathrm{C}$ और $\angle \mathrm{A}$ के रूप में लिखा जाता है ।
$\angle \mathrm{A}$ को $\overline{\mathrm{BC}}$ भुजा का सम्मुख कोण (opposite angle) और $\overline{\mathrm{BC}}$ भुजा को $\angle \mathrm{A}$ की सम्मुख भुजा कहा जाता है । उसी प्रकार :
$\angle \mathrm{B}$ का सम्मुख बाहु $\overline{\mathrm{CA}}$ और $\overline{\mathrm{CA}}$ का सम्मुख कोण $\angle \mathrm{B}, \angle \mathrm{C}$ की सम्मुख भुजा $\overline{\mathrm{AB}}$ है और $\overline{\mathrm{AB}}$ का सम्मुख कोण $\angle \mathrm{C}$ है ।
$\angle \mathrm{A}$ को $\overline{\mathrm{AB}}$ और $\overline{\mathrm{AC}}$ का अन्तर्गत कोण (included angle) कहा जाता है । उसी प्रकार:
$\overline{\mathrm{BC}}$ और $\overline{\mathrm{BA}}$ का अन्तर्गत कोण $\angle \mathrm{B}$ है और तथा $\overline{\mathrm{CA}}$ और $\overline{\mathrm{CB}}$ का अन्तर्गत कोण $\angle \mathrm{C}$ है । $\angle \mathrm{A}$ और $\angle \mathrm{B}$ प्रत्येक को भुजा $\overline{\mathrm{AB}}$ का संलग्न कोण कहा जाता है । उसी प्रकार :
$\overline{\mathrm{CA}}$ के दोनों संलग्न कोण हैं - $\angle \mathrm{C}$ और $\angle \mathrm{A}$ और $\overline{\mathrm{BC}}$ के दोनों संलग्न कोण हैं- $\angle \mathrm{B}$ और $\angle \mathrm{C}$ । $\overline{\mathrm{AB}}$ और $\overline{\mathrm{AC}}$ प्रत्येक को $\angle \mathrm{A}$ की संलग्न भुजा कहा जाता है ।

2.2 त्रिभुज का अन्त: भाग और बहिर्भाग (Interior and Exterior of the Triangle):

'एक सरलरेखा में न रहने वाले तीन बिंदुओं से होकर एक ही समतल संभव है ।' उसे तुम पहले से जानते हो । अतएव एक त्रिभुज सदैव एक समतल पर स्थित होगा । इसलिए श्यामपट के समतल पृष्ठ पर या तुम्हारी कॉपी के पृष्ठ (जो एक समतल का अंश है) पर त्रिभुज बनाया जा सकेगगा ।

तुम्हारे लिए गतिविधियाँ:

आकृति २.२ के $\angle \mathrm{ABC}$ और समतल में रहे $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{U}, \mathrm{V}, \mathrm{M}, \mathrm{N}$ और W बिंदुओं को देखकर नीचे के प्रश्नों के उत्तर दो । $\mathrm{A}, \mathrm{B}, \mathrm{C}$ और पहले दिए गए आठ बिंदुओं में से -
(i) कौन से बिंदु $\angle \mathrm{A}$ के अन्त: भाग में हैं ?
(ii) कौन से बिंदु $\angle \mathrm{B}$ के अन्त: भाग में हैं ?
(iii) कौन से बिंदु $\angle \mathrm{C}$ के अन्त: भाग में हैं ?
(iv) कौन से बिंदु $\angle \mathrm{A}, \angle \mathrm{B}$ और $\angle \mathrm{C}$ के अन्त:भाग में हैं ?
(v) कौन से बिंदु $\angle \mathrm{A}, \mathrm{B}$ और $\angle \mathrm{C}$ में से किसी का भी अन्त:कोण नहीं हैं ?
(vi) कौन से बिंदु $\triangle \mathrm{ABC}$ के ऊपर हैं ?

याद रखो : जो जो बिंदु $\angle \mathrm{A}, \angle \mathrm{B}$ और $\angle \mathrm{C}$ के अन्त:भाग में हैं, वे $\triangle \mathrm{ABC}$ के अन्त:भाग के बिंदु हैं
यहाँ जितने बिंदु हैं, उनमें से सिर्प P और $\mathrm{W}, \triangle \mathrm{ABC}$ के अन्तःभाग के बिंदु हैं । और भी असंख्य बिंदु हैं, जो $\triangle \mathrm{ABC}$ के अन्त:भाग में स्थित हैं । $\triangle \mathrm{ABC}$ के अन्तःभाग के सभी बिंदुओं के सेट को इसका ($\triangle \mathrm{ABC}$ का) अन्त:भाग (Interior) कहा जाता है ।

अब ध्यान दिया जा सकता हैं की $\triangle \mathrm{ABC}$ के समतल (श्यामपट के समतल या तुम्हारी किताब के पृष्ठ वे समतल) पर $\triangle \mathrm{ABC}$ या इसके अन्तःभाग में न रहने वाले और भी असंख्य बिंदु हैं । उन्हें $\triangle \mathrm{ABC}$ के वहिर्भाग के बिंदु कहा जाता है । (जैसे, आवृति 2.2 में $\mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{U}, \mathrm{V}$ बिंदु $\triangle \mathrm{ABC}$ के बहिर्भाग के बिंदु हैं ।) त्रिभुज वे बहिर्भाग के बिंदुओं के सेट को इसका बहिर्भाग कहा जाता है । अब हमने देखा कि एक समतल पर एक त्रिभुज बनाने से समतल पर रहने वाले बिंदुसमूह तीन सेट में बँट जाते हैं । वे हैं :
(i) त्रिभुज वे $ऊ प र ~ स ् थ ि त ~ ब ि ं द ु ओ ं ~ क ा ~ स े ट, ~(i i) ~ त ् र ि भ ु ज ~ क ा ~ अ न ् त: भ ा ग, ~(i i i) ~ त ् र ि भ ु ज ~ क ा ~$ बहिर्भाग ।

पहले अध्याय में उत्तल सेट पर चर्चा की गई है । आकृति 2.2 मे $\triangle \mathrm{ABC}$ के अन्त:भाग के किन्हीं दो बिंदु P और W का संयोजक रेखाखंड अर्थात् $\overrightarrow{\mathrm{PW}}$ खींचने से देखोगे कि यह त्रिभुज वे अन्त:भाग में रह जाता है । अतएव त्रिभुज का अन्तःभाग एक उत्तल सेट कहलाता है । (उत्तल सेट की परिभाषा को याद करो ।)

एक त्रिभुज उत्तल सेट नहीं हो सकता । $\triangle \mathrm{ABC}$ बिंदुओं के एक सेट है, जो इसकी $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}$ और $\overline{\mathrm{CA}}$ भुजाओं वे भीतर के बिंदुओं को लेकर बना है । आकृति 2.2 में M और N दोनों बिंदु $\triangle \mathrm{ABC}$ के ऊपर के बिंदु हैं । प्रांत बिंदु M और N के अलावा $\overline{\mathrm{MN}}$ के अन्य कोई बिंदु त्रिभुज के ऊपर के बिंदु नहीं हैं । ($\overline{\mathrm{MN}}$ खींचकर देखो) इसी कारण से $\triangle \mathrm{ABC}$ एक उत्तल सेट नहीं है ।

त्रिभुज का बहिर्भाग भी एक उत्तल सेट नहीं है । त्रिभुज के बहिर्भाग में ऐसे अनेक बिंदु-युग्म मिलेंगे, जिनवेन संयोजक रेखाखंड पूरी तरह से बहिर्भाग में नहीं होंगे । ($\overline{\mathrm{QS}}$ खींचकर देखो।)

क्या ऐसा कोई बिंदु मिलेगा, जो त्रिभुज पर और इसके अन्त:भाग में दोनों स्थान पर रह सकेता ? यह संभव नहीं है । अतएव एक त्रिभुज और इसवेन अन्त:भाग वे बीच कोई उभयनिष्ठ बिंदु नहीं है । उसी प्रकार ध्यान देने से पता चलेगा कि त्रिभुज और इसके बहिर्भाग के बीच भी कोई उभयनिष्ठ बिंदु नहीं है । एक त्रिभुज के अन्त:भाग और बहिर्भाग का भी कोई उभयनिष्ठ बिंदु नहीं है ।

एक त्रिभुज और इसके अन्तःभाग को एक साथ लेकर जो सेट बनता है, उसे त्रिभुज वे आकारवाला क्षेत्र या त्रिभुजाकार क्षेत्र (Triangular region) कहा जाता है ।

अर्थात् $\triangle \mathrm{ABC}$ और इसके अन्त:भाग को एक साथ लेने से ABC त्रिभुजाकार क्षेत्र बनता है । $\triangle \mathrm{ABC}$ के शीषर्बिंदु, कोण और भुजाओं को इस त्रिभुजाकार क्षेत्र के क्रमशः शीर्षबिंदु, कोण और भुजा कहा जा सकता है ।

2.3 विभिन्न प्रकार के त्रिभुज (Types of Triangles)

(A) भुजाओं की लंबाई से संबंधित प्रकार भेद :

(आवृति-2.3)
आकृति 2.3(a) में $\triangle \mathrm{ABC}$ की भुजाओं की लंबाई बराबर नहीं है । ऐसे त्रिभुज को विषमवाहु त्रिभुज (Scalene traingle) कहा जाता है । आवृति $2.3(\mathrm{~b})$ में $\triangle \mathrm{DEF}$ में $\mathrm{DE}=\mathrm{DF}$ हैं । इस प्रकार के त्रिभुज को समद्विवाहु त्रिभुज (Isoscales traingle) कहा जाता है । आकृति 2.3(c) में $\triangle \mathrm{PQR}$ में $\mathrm{PQ}=\mathrm{QR}=\mathrm{RP}$ हैं । इस प्रकार के त्रिभुज को समवाहु त्रिभुज (Equilateral traingle) कहा जाता हैं।

समद्विवाहु त्रिभुज में बराबर लंबांई वाली दोनों भुजाओं के अंतर्गत कोण को सामान्यत: इस त्रिभुज का शीर्षकोण (Vertex angle) कहा जाता है । परिणाम-स्वरूप 2.3(b) में समद्विवाहु $\triangle \mathrm{DEF}$ का शीर्षकोण $\angle \mathrm{D}$ है । समद्विवाहु त्रिभुज के शीर्षकोण के सम्मुख भुजा को सामान्यतः इसका आधार कहा जाता है । अतएव ऊपर की आकृति में समद्विवाहु त्रिभुज $\triangle \mathrm{DEF}$ का आधार है $\overline{\mathrm{EF}}$ । समद्विवाहु त्रिभुज के आधार के आसत्र कोण द्वय को इसके आधार के आसन्न कोण (Base angle) कहा जाता है । अतएव समद्विवाहु $\triangle \mathrm{EDF}$ के आधार के आसत्र कोण द्वय $\angle \mathrm{E}$ और $\angle \mathrm{F}$ हैं ।
परिभाषाः(i) जिस त्रिभुज की दो भुजाओं की लंबाई एक दूसरे के बराबर हो वह एक समद्विवानु त्रिभुज है ।
(ii) जिस त्रिभुज की तीनों भुजाओं की लंबाई बराबर हो, वह एक समवाहु त्रिभुज है ।
(iii) जिस त्रिभुज किन्हीं दो युग्म, भुजाओं की लंबाई एक दूसरे के बराबर न हो, वह एक विषमवाहु त्रिभुज है ।
(B) कोणों की माप संबंधी प्रकार भेद

आकृति 2.4(a) में $\triangle \mathrm{ABC}$ में $\angle \mathrm{B}$ समकोण है । ऐसे त्रिभुज को (जिसका एक कोण समकोण है) समकोण त्रिभुज (Right-angled triangle) कहा जाता है। ऐसे त्रिभुज में एक ही समकोण रह सकता है । आकृति $2.4(\mathrm{~b})$ में $\triangle \mathrm{DEF}$ का $\angle \mathrm{E}$ एक अधिक कोण है । ऐसे त्रिभुज को (जिसका एक कोण अधिक कोण हो) अधिक कोण त्रिभुज कहते हैं । (Obtuse-angled triangle) ऐसे त्रिभुज में एक ही अधिक कोण रह सकता है । आवृति 2.4(c) में $\triangle \mathrm{PQR}$ के $\angle \mathrm{P}, \angle \mathrm{Q}$ और $\angle \mathrm{R}$ प्रत्येक एक एक न्यून कोण हैं । ऐसे त्रिभुज न्यूनकोण त्रिभुज (Acute-angled triangle) कहा जाता है ।
परिभाषा (i) जिस त्रिभुज का एक कोण समकोण होता है, वह एक समकोण त्रिभुज है ।
(ii) जिस त्रिभुज का एक कोण अधिक कोण होता है । वह एक अधिक कोण त्रिभुज होता है ।
(iii) जिस त्रिभुज के तीनों कोण प्रत्येक न्यूनकोण होते हैं, वह एक न्यून कोण त्रिभुज है ।

परिभाषा से स्पष्ट हो गया कि एक समकोण त्रिभुज के समकोण के अलावा अन्य कोण-द्वय न्यून कोण होते हैं। एक अधिक कोण त्रिभुज के अधिक कोण के अलावा अन्य कोण द्वय प्रत्येक न्यून कोण होते हैं ।

2.4 त्रिभुज संबंधी कुछ परीक्षण

त्रिभुज संबधी कोई परीक्षण करने से पहले विभिन्न प्रकार के त्रिभुज वैसे बनाए जाते हैं, उन्हें जानना जरूरी है । अतएव पहले बिभिन्न प्रकार के त्रिभुज बनाने की प्रणाली की चर्चा होती है ।

परकार का व्यवहार:

परकार का व्यवहार तुम जानते हो । परकार की सहायता से तुम वृत्त

(आवृति 2.5) बना पाते है । बृत्त के बारे में तुम्हें और कुछ अवधारणा दी जा रही है ।

तुम्हारी कॉपी कें किसी पृष्ठ पर चिह्नित एक बिंदु ' P ' से एक निश्चित दूरी (मान लो r इकाई) पर कॉपी के उस पृष्ठ पर स्थित सभी बिंदुओं को परकार की सहायता से चिह्नित किया जा सकता है । इन बिंदुओं को एक साथ लेकर जो आवृति मिलती है, उसे वृत्त (Circle) कहा जाता है । परकार की सहायता से वृत्त की रचना करना शुरू करके पेंसिल की नोक को वुछ दूरी घुमाकर (वृत्त-रचना के प्रांरभिक बिंदु पर पहुँचने से पहले) वृत्त की रचना बंद कर देने से जो आकृति मिलती है, उसे एक चाप (arc) कहते हैं। P बिंदु को इस चाप का केंद्र और r को त्रिज्या (radious) कहा जाता है । एक चाप की रचना करके हमें बिंदु ' P ' से r इकाई दूरी तक अनेक बिंदु मिलते हैं ।
(A) विषम वाहु त्रिभुज की रचना (स्वेले और परकार की सहायता से)
(i) किसी भी लंबाई $\overline{\mathrm{BC}}$ खींचो ।
(ii) B को केन्द्र करके r त्रिज्या वाला चाप

$$
(\mathrm{r} \neq \mathrm{BC}) \text { खींचो । }
$$

(आकृति 2.6)
(iii) C को केन्द्र करवे और BC तथा (ii) में ली गई त्रिज्या से अलग एक त्रिज्या लेकर और एक चाप खींचो, जैसे कि यह (ii) में खींचे गए चाप को प्रतिच्छेद करेगा । प्रतिच्छेद बिंदु का नाम A हो । $\overline{\mathrm{AB}}$ और $\overline{\mathrm{AC}}$ खींचो । अब मिला त्रिभुज एक विषम वाहु त्रिभुज है ।
(B) समद्विवाह विभुज की रचना (स्वेल और परकार की सहायता से)
(i) किसी भी लंबाईवाली $\overline{\mathrm{BC}}$ खींचो ।
(ii) B को केनेन्द्र करके BC के बराबर त्रिज्या लेकर एक चाप खींचो ।
(iii) C बिंदु को केन्द्र करके BC से अलगा एक त्रिज्या लेकर एक चाप खींचो, जैसे कि यह (ii) में खींचे गए चाप को प्रतिच्छेद करेगा । प्रतिच्छेद बिंदु का नाम A दो ।

(iv) $\overline{\mathrm{AB}}$ और $\overline{\mathrm{AC}}$ खींचो ।

अब मिला $\triangle \mathrm{ABC}$ एक समद्विवाहु त्रिभुज है । इसकी
$\mathrm{BC}=\mathrm{AB}$ और $\overline{\mathrm{CA}}$ इसका आधार है ।

(C) समवाहु त्रिभुज की रचना

(i) किसी भी लंबाईवाली $\overline{\mathrm{BC}}$ खींचो ।
(ii) B को वेन्द्र करवे BC के बराबर त्रिज्या लेकर एक चाप खींचो ।
(iii) C बिंदु को केन्द्र करके (ii) में ली गई त्रिज्या (BC के बराबर) लेकर एक चाप खींचो ।
(iv) चरण (ii) और (iii) में खींचे गए चाप द्वय के

(आकृति 2.8) प्रतिच्छेद बिंदु का नाम A दो । $\overline{\mathrm{AB}}$ और $\overline{\mathrm{AC}}$ खींचो । अब मिला $\triangle \mathrm{ABC}$ एक समवाहु त्रिभुज है ।
(D) समकोण त्रिभुज की रचना
(i) किसी भी लंबाईवाली $\overline{\mathrm{BC}}$ खींचो ।
(ii) $\overline{\mathrm{BC}}$ के साथ सेट्स्कोयर वे समकोण संलग्न एक किनारा सटाकर रखो, जैसे की इसका समकोण B पर रहेगा। सेट्स्कोयर के समकोण संलग्न दूसरे किनारे को सटाकर एक रेखाखंड खींचो, जिसका एक प्रान्तबिंदु B है और अन्य प्रांतबिंदु का नाम A दो ।
(iii) $\overline{\mathrm{AC}}$ खींचो । अब मिला $\triangle \mathrm{ABC}$ एक समकोण त्रिभुज

(आकृति 2.9) है ।
(E) अधिक कोण त्रिभुज को रचना :

एक अधिक कोण त्रिभुज की रचना करने के लिए
(i) किसी भी लंबाईवाली $\overline{\mathrm{BC}}$ खींचो ।
(ii) $\overline{\mathrm{BC}}$ के B पर अधिक कोण (अर्थात् 90° से अधिक मापवाला कोण) बनाने वाला $\overline{\mathrm{BA}}$ (किसी भी लंबाईवाली) खींचो ।
(iii) $\overline{\mathrm{AC}}$ खींचो ।
(आकृति 2.10)
 अब मिला $\triangle \mathrm{ABC}$ एक अधिक कोण त्रिभुज है ।

परीक्षण-1 : (एक त्रिभुज के तीनों कोणों के परिमाण के बीच संबंध का निरूपण :

स्केल, परकार और आवश्यकता पड़ने पर सेट्स्कोयर का व्यवहार करके अलग-अलग प्रकार के तीन त्रिभुजों की रचना करो । प्रत्येक का नाम $\triangle \mathrm{ABC}$ दो । तीनों त्रिभुजों को क्रमश नं- 1 , नं- 2 , नं- 3 द्वारा चिह्नित करो । प्रत्येक कोण की चाँद को सहायता से मापकर नीचे दी गई सारणी में भरो ।

आवृत्ति नं	$\mathrm{m} \angle \mathrm{A}$	$\mathrm{m} \angle \mathrm{B}$	$\mathrm{m} \angle \mathrm{C}$	$\mathrm{m} \angle \mathrm{A}+\mathrm{m} \angle \mathrm{B}+\mathrm{m} \angle \mathrm{C}$
1				
2				
3				

(सारणी 2.1)
प्रत्येक आकृति के लिए सारणी में अंतिम खाने में $\mathrm{m} \angle \mathrm{A}+\mathrm{m} \angle \mathrm{B}+\mathrm{m} \angle \mathrm{C}=180^{\circ}$ होगा ।
निष्कर्ष (i) किसी भी त्रिभुज के तीनों कोणों के परिमाण का योग 180° होगा ।
उपनिष्कर्ष-1: एक त्रिभुज में अधिक से अधिक एक समकोण या एक अधिक कोण रह सकता है ।

उपनिष्कर्ष-2 : $\overleftrightarrow{B C}$ के बहिर्भाग में ' P ' एक बिंदु हो तो, ' P ' बिंदु से होकर सिर्पन एक $\overleftrightarrow{\mathrm{PQ}}$ खिंचना संभव है, जैसे कि $\overleftrightarrow{\mathrm{BC}}$ के साथ $\overleftrightarrow{\mathrm{PQ}}$ एक समकोण की रचना करेगी । इस क्षेत्र में $\overleftrightarrow{\mathrm{PQ}}$ और $\overleftrightarrow{\mathrm{BC}}$ परस्पर वे प्रति लंब हैं। (Perpendicular to each other or mutually perpendicular) यदि $\overleftrightarrow{\mathrm{BC}}$ और $\overleftrightarrow{\mathrm{PQ}}$ का प्रतिच्छेद बिंदु M हो, तो $\overline{\mathrm{PM}}$ को ' P ' बिंदु से $\overleftrightarrow{\mathrm{BC}}$ के प्रति लंब कहा जाता है । ' M ' बिंदु को $\overline{\mathrm{PM}}$

(आकृति 2.11) लंब का पादबिंदु (Foot of the perpendicular) कहा जाता है ।

त्रिभुज की ऊँचाई (Height of the triangle)

$\triangle \mathrm{ABC}$ में A बिंदु से $\overline{\mathrm{BC}}$ के प्रति एक ही लंब की रचना करना संभव है ।
उसी प्रकार B और C बिंदुओं से क्रमशः $\overline{\mathrm{AC}}$ और $\overline{\mathrm{AB}}$ के प्रति भी एक एक लंब की रचना की जा सकती है । तीनों लंबों के पाद्बिंदु P, Q और R हों, तो $\overline{\mathrm{AP}}, \overline{\mathrm{BQ}}$ और $\overline{\mathrm{CR}}$ को $\triangle \mathrm{ABC}$ में शीर्षबिंदु से (विपरीत) सम्मुख भुजा के प्रति लंब (Perpendicular) कहा जाता है ।
$\overline{\mathrm{AP}}$ की लंबाई AP को $\triangle \mathrm{ABC}$ के A शीर्ष बिंदु से $\overline{\mathrm{BC}}$ के प्रति ऊँचाई कहा जाता है । उसी प्रकार BQ और CR को क्रमश B बिंदु से $\overline{\mathrm{AC}}$ के प्रति और C से $\overline{\mathrm{AB}}$ के प्रति ऊँचाई (Height) कहा जाता है ।

(c)

आवृति 2.12(a) में न्यूनकोण $\triangle \mathrm{ABC}$ के शीषबिंदु से सम्मुख भुजाओं के प्रति लंब-त्र्य दर्शाए गए हैं। आकृति $2.12(\mathrm{~b})$ में देखो कि अधिक कोण त्रिभुज में अधिक कोण की आसत्र भुजाओं के प्रति सम्मुख शीर्षबिंदु से खींचे गए लंबद्वय त्रिभुज के अन्त: भाग में नहीं हैं। यह केवल अधिक कोण त्रिभुज के क्षेत्र में संभव होता है । आकृति $2.12(\mathrm{c})$ में देखो कि $\overline{\mathrm{AB}}$ भुजा ही A बिंदु से $\overline{\mathrm{BC}}$ के प्रति लंब है और $\overline{\mathrm{BC}}$ भुजा ही C बिंदु से $\overline{\mathrm{AB}}$ के प्रति लंब है।
त्रिभुज की माध्यिका (Median of Triangle)
त्रिभुज के किसी भी कौणिक बिंदु और उसकी सम्मुख भुजा के मध्यबिंदु को जोड़ने वाले रेखाखंड को त्रिभुज की माध्यिका (median) कहा जाता हैं । आकृति 2.13 में A एक कौणिक बिंदु है। A की सम्मुख भुजा $\overline{\mathrm{BC}}$ का मध्यबिंदु D है। अतएव $\overline{\mathrm{AD}}$ एक माध्यिका है । उसी प्रकार $\overline{\mathrm{BE}}$ और $\overline{\mathrm{CF}}$ दो माध्यिकाएँ है । किसी त्रिभुज की तीन माध्यिकाएँ होती हैं।

त्रिभुज के कोणों का समद्धिभाजक (Bisector of the angles of a Triangle or Angle-bisectors of a triangle):
$\triangle \mathrm{ABC}$ के कोणों की समद्विभाजक रश्मियाँ हैं - $\overrightarrow{\mathrm{AX}}, \overrightarrow{\mathrm{BY}}$ और $\overrightarrow{\mathrm{CZ}}$ । वे क्रमशः $\angle \mathrm{A}, \angle \mathrm{B}$ और $\angle \mathrm{C}$ वे े अन्त: समद्विभाजक हैं। (इन्हें सिर्पन समद्विभाजक कहना पर्याप्त है ।)

(आवृति 2.13)

(आवृति 2.14)

परीक्षण-२ : एक त्रिभुज की भुजा-त्र्य की लंबाई के बीच संबंध निरूपण:
भिन्न-भिन्न प्रकार के तीन त्रिभुजों की रचना करके (स्केल, परकार और आवश्यकता पड़ने पर सेटस्कोयर की सहायता लेकर) उन्हें आकृति नं-1, नं- 2 और नं 3 के रूप में चिह्नित करो । प्रत्येक का नाम $\triangle \mathrm{ABC}$ दो । प्रत्येक त्रिभुज की भुजाओं की लंबाई मापकर नीचे दी गई सारणी में भरो :

आवृति नं	AB	BC	CA	$\mathrm{AB}+\mathrm{BC}$	$\mathrm{BC}+\mathrm{CA}$	$\mathrm{CA}+\mathrm{AB}$
1						
2						
3						

सारणी 2.2
निष्कर्ष-2: एक त्रिभुज की किन्हीं दो भुजाओं का योग इसकी तीसरी भुजा की लंबाई से बृहतर है ।

नोट : (1) $\mathrm{AB}=2$ से.मी., $\mathrm{BC}=4$ से.मी., $\mathrm{CA}=6$ से.मी. हो तो क्या $\triangle \mathrm{ABC}$ की रचना संभव है ?

ध्यान दो : यहाँ दो भुजाओं की लंबाई का योगफल तीसरी भुजा की लंबाई वे बराबर है । अर्थात् $\mathrm{AB}+\mathrm{BC}=\mathrm{CA}$ है । यहाँ त्रिभुज की रचना करना संभव नहीं है ।
(2) किसी भी $\triangle \mathrm{ABC}$ में $\mathrm{AB}+\mathrm{BC}>\mathrm{CA}$ या $\mathrm{AB}+\mathrm{BC}-\mathrm{BC}>\mathrm{CA}-\mathrm{BC}$ या $\mathrm{AB}>$ $\mathrm{CA}-\mathrm{BC}$ या $\mathrm{CA}-\mathrm{BC}<\mathrm{AB}$ होगी ।

उपनिष्कर्ष : किसी भी त्रिभुज की दो भुजाओं की लंबाई का अंतर तीसरी भुजा की लंबाई से क्षुद्रतर है ।
$\mathrm{AB}=2$ से.मी., $\mathrm{BC}=3$ से.मी और $\mathrm{CA}=6$ से.मी. हो तो क्या $\triangle \mathrm{ABC}$ की रचना करना संभव है ? ध्यान दो, यहाँ $\mathrm{CA}-\mathrm{BC}>\mathrm{AB}$ है । अतएव $\triangle \mathrm{ABC}$ की रचना करना संभव नहीं है ध्यान दो, यहाँ $\mathrm{AB}-\mathrm{BC}<\mathrm{CA}$ है । अतएव $\triangle \mathrm{ABC}$ की रचना करना संभव नहीं है ।

परीक्षण-3: एक समद्विवाहु त्रिभुज की सर्वांगसम भुजा-द्वुय के सम्मुख कोणद्वय में संबंध निरूपण:

स्केल, परकार, आवश्यकता पड़ने पर सेट्स्कोयर की सहायता से तीन अलग-अलग आकृति के समद्विवाहु त्रिभुजों की रचना करो । प्रत्येक आकृति में बराबर लंबाई वाली भुजा द्वय के नाम $\overline{\mathrm{AB}}$ और $\overline{\mathrm{AC}}$ दो । बराबर लंबाई वाली भुजा द्वय की लंबाई और भुजाओं के सम्मुख कोणों का परिमाण मापो । आवृतित तीनों को नं- 1 , नं- 2 और नं- 3 के नाम से सूचित करो । प्रत्येक आवृति से ज्ञात मापों को दी गई सारणी में उपयुक्त खानों में भरो :

आकृति नं	AB	AC	$\mathrm{m} \angle \mathrm{ABC}$	$\mathrm{m} \angle \mathrm{ACB}$
1				
2				
3				

सारणी 2.3
सारणी से हमें ज्ञात होता है कि प्रत्येक आवृति में बराबर लंबाई वाली भुजाएँ $\overline{\mathrm{AB}}$ और $\overline{\mathrm{AC}}$ के सम्मुख कोणों $\angle \mathrm{ABC}$ और $\angle \mathrm{ACB}$ का परिमाण भी बराबर है ।
निष्कर्ष-3: किसी भी समद्विवाहु त्रिभुज की बराबर लंबाई वाली दोनों भुजाओं के सम्मुख कोणों का परिमाण बराबर होगा ।

उपनिष्कर्ष : एक समवाहु त्रिभुज के कोण-त्र्य का परिमाण बराबर है और प्रत्येक का परिमाण 60° होगा ।

परिक्षण-4 : दो सर्वसम कोण वाले त्रिभुज के सर्वसम कोण-द्वय के बीच संबंध :
(i) $\overline{\mathrm{BC}}$ रेखाखंड खींचो
(ii) $\overline{\mathrm{BC}}$ के साथ B पर न्यूनकोण बनानेवाली एक रश्मि खींचो ।
(iii) $\overline{\mathrm{BC}}$ के साथ C पर न्यूनकोण बनाने वाली एक रश्मि खींचो, जैसे कि C पर बने कोण का परिमाण और B पर बने कोण का परिमाण एक दूसरे के बराबर हो । (चाँद का व्यवहार करके कोण बनाओंगे ।) और (ii) तथा (iii) में खींची गई दोनों रश्मियाँ एक दूसरे को प्रतिच्छेद करेंगी । इस प्रतिच्छेद बिंदु का नाम A दो ।
अब मिले $\triangle \mathrm{ABC}$ में $\mathrm{m} \angle \mathrm{B}=\mathrm{m} \angle \mathrm{C}$ है । इसी प्रणाली से और दो त्रिभुजों की रचना करो । प्रत्येक त्रिभुज का नाम ABC दो, जैसे कि $\mathrm{m} \angle \mathrm{B}=\mathrm{m} \angle \mathrm{C}$ होगा । प्रत्येक आवृतत से AB और AC की लंबाई मापकर नीचे की सारणी भरो । सारणी से ज्ञात होगा कि प्रत्येक त्रिभुज में $\mathrm{AB}=\mathrm{AC}$ है । निष्कर्ष-4: एक त्रिभुज के दो कोणों का परिमाण बराबर होने पर, इन कोण-द्वय की सम्मुख भुजा-दोनों बराबर हैं ।

आकृति नं	AB	AC
1		
2		
3		

(आवृति 2.4)

2.5 त्रिभुज का बाह्य कोण

हम किसी भी त्रिभुज वे $े$ कोण-त्र्य को त्रिभुज के अन्त: कोण (Interior angles) कहते हैं । आवृति 2.15 में $\overrightarrow{\mathrm{CB}}$ की विपरीत रश्मि $\overrightarrow{\mathrm{CP}}$ हो तो $\angle \mathrm{ACB}$ का आसत्र संपूरक कोण मिलता है । उसी प्रकार $\overrightarrow{\mathrm{CA}}$ की विपरीत रश्मि $\overrightarrow{\mathrm{CQ}}$ हो, तो $\angle \mathrm{ACB}$ दूसरा आसन्न संपूरक $\angle \mathrm{BCQ}$ मिलता है ।

(आकृति 2.15)
$\overrightarrow{\mathrm{BP}}$ और $\overrightarrow{\mathrm{AQ}}$ का प्रतिच्छेद बिंदु C है । अतएव $\angle \mathrm{ACP}$ और $\angle \mathrm{BCQ}$ एक जोड़ा विपरीत कोण है । अतः उन कोण-द्वय का परिमाण बराबर है । परिभाषा के अनुसार $\triangle \mathrm{ABC}$ के शीर्ष बिंदु C पर स्थित दो बाह्य कोण हैं - $\angle \mathrm{ACP}$ और $\angle \mathrm{BCQ}$ । ध्यान दो $\angle \mathrm{PCQ}, \triangle \mathrm{ABC}$ का बाह्य कोण नहीं है ।

त्रिभुज के बाह्य कोण संबंधी कुछ जानने की बातें (i) त्रिभुज के प्रत्येक शीर्षबिंदु पर दो बाह्य कोण उत्पन्न होते हैं और दोनों का परिमाण बराबर है ।
(ii) त्रिभुज के किसी भी शीर्षबिंदु पर उत्पन्न अन्त: कोण और बाह्य कोण के परिमाण का योग 180° होता है ।
(iii) $\triangle \mathrm{ABC}$ के $\angle \mathrm{B}$ और $\angle \mathrm{C}$ प्रत्येक को A पर उत्पन्न बाह्य कोण के दूरवर्ती अन्त: कोण (Remote interior angle) कहा जाता है ।

परीक्षण-5 :
किसी त्रिभुज के एक शीर्षबिंदु पर उत्पन्न एक बाह्य दूरवर्ती कोण वे परिमाण के साथ इसके दोनों अन्त: कोणों के परिमाण के बीच संबंध निरूपण:

आकृति 2.16 की तरह तीन त्रिभुजों की रचना करके
 प्रत्येक को $\mathrm{ABC} \Delta$ का नाम दो । प्रत्येक आवृति में $\overrightarrow{\mathrm{CB}}$ की विपरीत रश्मि $\overrightarrow{\mathrm{CP}}, \overrightarrow{\mathrm{AC}}$ की विपरीत रश्मि $\overrightarrow{\mathrm{AQ}}$, और $\overrightarrow{\mathrm{BA}}$ की विपरीत रश्मि $\overrightarrow{\mathrm{BR}}$ खींचो ।
$\angle \mathrm{A}, \angle \mathrm{B}, \angle \mathrm{C}$ बहिर्भाग के $\angle \mathrm{ACP}, \angle \mathrm{BAQ}$ और $\angle \mathrm{CBR}$ का परिमाण ज्ञात करो । (चाँद की सहायता से) और नीचे की सारणी के खानों को भरो :

आवृति नं	$\mathrm{m} \angle \mathrm{A}+\mathrm{m} \angle \mathrm{B}$	$\mathrm{m} \angle \mathrm{ACP}$	$\mathrm{m} \angle \mathrm{B}+\mathrm{m} \angle \mathrm{C}$	$\mathrm{m} \angle \mathrm{BAQ}$	$\mathrm{m} \angle \mathrm{C}+\mathrm{m} \angle \mathrm{A}$	$\mathrm{m} \angle \mathrm{CBR}$
1						
2						
3						

सारणी 2.5
ऊपर की सारणी से हमें ज्ञात हुआ कि: $\mathrm{m} \angle \mathrm{ACP}=\mathrm{m} \angle \mathrm{BAC}+\mathrm{m} \angle \mathrm{ABC}$, $\mathrm{m} \angle \mathrm{BAQ}=\mathrm{m} \angle \mathrm{ABC}+\mathrm{m} \angle \mathrm{BCA}$ और $\mathrm{m} \angle \mathrm{CBR}=\mathrm{m} \angle \mathrm{CAB}+\mathrm{m} \angle \mathrm{BCA}$ है ।

निष्कर्ष-5 : किसी भी त्रिभुज के शीर्षबिंदु पर स्थित एक बाह्य कोण का परिमाण इसके दूरवर्ती अंत:कोण द्वय के परिमाण के योगफल के बराबर है ।

चर्चा किए गए निष्कर्षों पर आधारित कुछछ उदाहरण :
उदाहरण-1: जिस त्रिभुज के दो कोणों का परिमाण क्रमशः 110° और 36° हैं, उसके तीसरे कोण का परिमाण ज्ञात करो ।

हलः त्रिभुज के तीनों कोणों के परिमाण का योगफल 180° है ।
दो कोणों के परिमाण 110° और 36° हैं ।
\therefore तीसरे कोण का परिमाण $=180^{\circ}-\left(110^{\circ}+36^{\circ}\right)$

$$
=180^{\circ}-146^{\circ}=34^{\circ} \text { (उत्तर) }
$$

उदाहरण-2: एक समद्विवाहु त्रिभुज के शीर्षकोण का परिमाण 70° है । इसके आधार के प्रत्येक आसत्र कोण का परिमाप और शीर्षबिंदु C पर स्थित बाह्य कोण का परिमाण ज्ञात करो ।

हल : बगल की आकृति में $\triangle \mathrm{ABC}$ एक समद्विवाहु त्रिभुज है यहाँ $\mathrm{AB}=\mathrm{AC}$
प्रश्न के अनुसार $\mathrm{m} \angle \mathrm{A}=70^{\circ}$
$\therefore \mathrm{AB}=\mathrm{AC}$, अतएव $\mathrm{m} \angle \mathrm{B}=\mathrm{m} \angle \mathrm{C}$
\therefore तानों कोणों के परिमाण का योगफल 180° ।
आधार के प्रत्येक आसत्र कोणद्वय के परिमाण का योग $=180^{\circ}-70^{\circ}=110^{\circ}$
\therefore आधार वे प्रत्येक आसत्र कोण का परिमाण $=\frac{110^{\circ}}{2}=55^{\circ}$
$\therefore \mathrm{C}$ शीर्षबिंदु पर बाह्य कोण का परिमाण $=\mathrm{M} \angle \mathrm{A}+\mathrm{M} \angle \mathrm{B}=70^{\circ}+55^{\circ}=125^{\circ}$ (उत्तर)
उदाहरण-3 : एक समकोण त्रिभुज के न्यून कोणों में से एक दूसरे का दुगुना है । दोनों न्यून कोणों का परिमाण ज्ञात करो ।

हल: समकोण त्रिभुज का एक कोण समकोण होता है । अन्य दो न्यूनकोणों के परिमाण का योगफल $=180^{\circ}-90^{\circ}=90^{\circ}$

मान लो एक न्यून कोण का परिमाण है $=x^{\circ}$
दूसरे न्यूनकोण का परिमाण होगा $=2 x^{\circ}$
उनका योगफल $=x^{\circ}+2 x^{\circ}=3 x^{\circ} \quad 3 x^{\circ}=90^{\circ}$
एक न्यून कोण x° का परिमाण $=\frac{90^{\circ}}{3}=30^{\circ}$
\therefore दूसरे न्यून कोण का परिमाण $=2 x^{\circ}=2 \times 30^{\circ}=60^{\circ}$ (उत्तर)

अभ्यास- 2

1. निम्न उक्तियाँ सही हों तो, खानों में सही (\checkmark) निशान और गलत हो तो (\times) निशान लगाओ :
(a) $\overleftrightarrow{\mathrm{AB}}, \overleftrightarrow{\mathrm{BC}}$ और $\overleftrightarrow{\mathrm{CA}}$ प्रत्येक, $\triangle \mathrm{ABC}$ की एक एक भुजा है । \square
(b) $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}$ और $\overline{\mathrm{CA}}$ तीनों रेखाखंडों से $\triangle \mathrm{ABC}$ त्रिभुज की रचना होती है । \square
(c) त्रिभुज बिंदुओं का सेट होता है । \square
(d) एक अधिक कोण त्रिभुज में ज्यादा-से-ज्यादा एक अधिक कोण रहेगा ।
(e) $\triangle \mathrm{ABC}$ के $\angle \mathrm{B}$ और $\angle \mathrm{C}$ को A पर स्थित बाह्यकोण का दूरवर्ती अंत: कोण कहा जाता है ।
(f) एक समकोण त्रिभुज में ज्यादा - से - ज्यादा दो न्यूनकोण रह सकते हैं ।
(g) $\triangle \mathrm{ABC}$ में $\mathrm{AB}=\mathrm{AC}$ हों, तो $\angle \mathrm{A}$ और $\angle \mathrm{B}$ का परिमाण बराबरा होगा ।
(h) त्रिभुज की माध्यिका-त्र्यका प्रतिच्छेद बिंदु सदैव त्रिभुज के अन्त:भाग में नहीं भी रह सकते हैं । \square
(i) त्रिभुज के दो कोणों के परिमाण का योगफल सदैव तीसरे कोण के परिमाण से अधिक होगा । \square
(j) त्रिभुज के तीनों कौणिक बिंदु त्रिभुज के अन्तःभाग के बिंदु होते हैं ।
(k) त्रिभुज की दो भुजाओं का योगफल तीसरी भुजा की लंबाई की अपेक्षा वृहत्तर है । \square
(1) एक त्रिभुज के शीर्षबिंदु पर उत्पन्न बाह्यकोण का परिमाण सदैव इस शीर्ष पर स्थित अतः कोण के परिमाण से वृहत्तर होगा ।
2. शून्यस्थान भरो :
(a) एक त्रिभुज के \qquad शीर्षबिंदु होते हैं ।
(b) एक त्रिभुज में कुल माध्यिकाओं की संख्या \qquad है ।
(c) एक त्रिभुज की भुजाओं की संख्या \qquad है ।
(d) एक न्यूनकोण त्रिभुज के कौणिक बिंदु से सम्मुख भुजा के प्रति अंकित लंबों की संख्या \qquad होगी ।
(e) एक त्रिभुज की कोणों की संख्या \qquad है।
3. बगल की आकृति को दखकर बिंदुओं की स्थिति वे अनुसार सारणी के खानों में (\checkmark) निशान लगाओ:

बिंदु की स्थिति	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{L}	\mathbf{E}	\mathbf{M}	\mathbf{N}	\mathbf{S}	\mathbf{K}
$\triangle \mathrm{ABC}$ वे ऊपर												
$\triangle \mathrm{ABC}$ के अन्त:भाग में												
$\triangle \mathrm{ABC}$ के बहिर्भाग में												

सारणी- 2.6

4. $\triangle \mathrm{ABC}$ के बाह्यकोण $\angle \mathrm{BAF}, \angle \mathrm{CBD}$ और $\angle \mathrm{ACE}$ है । जब $\mathrm{M} \angle \mathrm{BAF}=112^{\circ}$ हो, और $\mathrm{M} \angle \mathrm{ABC}=53^{\circ}$ हो, तब अन्य सभी कोणों का परिमाण ज्ञात करो ।

5. $\triangle \mathrm{ABC}$ के $\mathrm{m} \angle \mathrm{A}=70^{\circ}$ और $\mathrm{m} \angle \mathrm{B}=36^{\circ}$ हों तो $\mathrm{m} \angle \mathrm{C}$ का परिमाण ज्ञात करो । $\triangle \mathrm{ABC}$ किस प्रकार का त्रिभुज है ? इसका उत्तर कारण सहित दर्शाओ ।
6. $\triangle \mathrm{ABC}$ के $\angle \mathrm{A}$ का परिमाण $\angle \mathrm{B}$ के परिमाण से 10° अधिक है । $\angle \mathrm{B}$ का परिमाण $\angle \mathrm{C}$ के परिमाण से 10° अधिक है । तीनों कोणों का परिमाण ज्ञात करो ।
7. $\triangle \mathrm{ABC}$ में $\mathrm{m} \angle \mathrm{B}=90^{\circ}$, तब नीचे दिए गए प्रश्नों के उत्तर दो :
(i) $\mathrm{m} \angle \mathrm{A}+\mathrm{m} \angle \mathrm{C}=$ कितना होगा ?
(ii) $\mathrm{AB}=\mathrm{BC}$ हों तो $\mathrm{m} \angle \mathrm{A}$ कितना होगा ?
(iii) $\mathrm{m} \angle \mathrm{C}=30^{\circ}$ हो तो $\mathrm{m} \angle \mathrm{A}=$ कितना होगा ?
(iv) B बिंदु पर $\triangle \mathrm{ABC}$ के बहि:र्भाग के कोण का परिमाण ज्ञात करो ।
(v) $\mathrm{m} \angle \mathrm{A}=45^{\circ}$ हो तो $\triangle \mathrm{ABC}$ की कौन-सी दो भुजाओं की लंबाई बराबर होगी ।
8. ABC समकोण त्रिभुज का $\mathrm{m} \angle \mathrm{B}=90^{\circ}, \angle \mathrm{A}$ का परिमाण, $\angle \mathrm{C}$ के परिमाण का पाँच गुना है । दोनों कोणों का परिमाण ज्ञात करो ।
9. $\triangle \mathrm{ABC}$ के $\mathrm{M} \angle \mathrm{A}=48^{\circ}$ और $\mathrm{m} \angle \mathrm{B}=110^{\circ}$ हों तो नीचे दी गई उक्तियों के शून्य-स्थान भरो । (a) शीर्षबिंदु म__ स्थित बाह्यकोण एक न्यूनकोण होगा ।
(b) शीरर्षबंदु A पर स्थित बाह्यकोण का परिमाण
\qquad होगा ।
(c) B पर स्थित बाह्यकोण का परिमाण \qquad होगा ।
(d) C पर स्थित बाह्यकोण का परिमाण \qquad होगा

(आकृति 2.20)
10. बगल की आवृति में $\overline{\mathrm{AD}} \perp \overline{\mathrm{BC}}, \mathrm{AD}=\mathrm{BD}$ और $\mathrm{m} \angle \mathrm{DAC}=42^{\circ}$ है । 1,2 और 3 द्वारा चिह्नित कोणों का परिमाण ज्ञात करो ।
11. $\triangle \mathrm{ABC}$ (आवृति 2.21) में $\mathrm{AB}=\mathrm{AC}$ हों तो दर्शाओ कि B और C बिंदु पर उत्पन्न दोनों बाह्यकोण एक दूसरे के बराबर हैं ।

(आवृति 2.21)
12. एक त्रिभुज के एक बाह्य कोण का परिमाण 120° है । उसके दोनों दूरवर्ती अंतःकोणों में से एक का परिमाण 70° है, तो दूसरे दूरवर्ती अंतःकोण का परिमाण ज्ञात करो ।
13. बगल की आकृति में दर्शाओ कि

$$
\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{AD}>2 \mathrm{AC}
$$

14. एक त्रिभुज के तीन कोणों में से एक का परिमाण क्षुद्रतम कोण वे परिमाण का दुगुना है । दूसरे का परिमाण क्षुद्रतम कोण के परिमाण का तीन गुना है । वृहत्तम कोण का परिमाण ज्ञात करो ।
15. आवृति 2.23 (i), (ii) और (iii) में दी गई बगल की आवृत्यिों में ' x ' चिह्नित कोण का परिमाण ज्ञात करो ।

(आवृति 2.23)
16. एक त्रिभुज वे कोण-त्र्य के परिमाण का अनुपात $2: 3: 4$ है । उनका परिमाण ज्ञात करो ।
17. $\triangle \mathrm{ABC}$ में $\mathrm{m} \angle \mathrm{A}+\mathrm{m} \angle \mathrm{B}=125^{\circ}$ है और $\mathrm{m} \angle \mathrm{A}+\mathrm{m} \angle \mathrm{C}=113^{\circ}$ है । त्रिभुज के कोण त्रय का परिमाण ज्ञात करो ।
18. $\triangle \mathrm{ABC}$ में जब $2 \mathrm{~m} \angle \mathrm{~A}=3 \mathrm{~m} \angle \mathrm{~B}=6 \mathrm{~m} \angle \mathrm{C}$ हो तो कोण त्रय का परिमाण ज्ञात करो ।
19. वगल की आकृति (2.24) में दर्शाओ कि

$$
\mathrm{m} \angle \mathrm{DBC}+\mathrm{m} \angle \mathrm{BCE}>2 \mathrm{~m} \angle \mathrm{~A} .
$$

(आकृति-2.24)
20. $\triangle \mathrm{ABC}$ का $\mathrm{m} \angle \mathrm{A}=\mathrm{m} \angle \mathrm{B}+\mathrm{m} \angle \mathrm{C}$ है $\mathrm{m} \angle \mathrm{B}=2 \mathrm{~m} \angle \mathrm{C}$ है । कोण-त्र्य का परिमाण ज्ञात करो ।

चतुर्भुज (QUADRILATERAL)

3.1 चतुर्भुज का परिचय:

पिछले अध्याय में हमें ज्ञात हुआ कि एक सरलरेखा में न रहे तीन अलग-अलग बिंदु A, B, और C दिए गए हों, तो हम कुल 3 रेखाखंड $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}$ और $\overline{\mathrm{CA}}$ बना सकते हैं और इन तीन रेखाखंड मिलकर एक त्रिभुज की रचना करते हैं, जिसे हम $\triangle \mathrm{ABC}$ का नाम देते हैं ।

नैकरेखी बिंदु-त्र्य किसी भी स्थिति में क्यों न रहें, प्रत्येक स्थिति में त्रिभुज की रचना करना संभव है ।

अब हम एक समतल पर चारों अलग-अलग बिंदुओं पर चर्चा करेंगे ।
एक समतल पर चार अलग-अलग बिंदु $\mathrm{A}, \mathrm{B}, \mathrm{C}$ और D तीन प्रकार की स्थितियों में रह सकते हैं, जैसे -
(i) सभी बिंदु एकरेखी होंगे । (ii) कोई भी तीन बिंदु एकरेखी होंगे । (iii) कोई भी तीन बिंदु एकरेखी नहीं होंगे ।
(i) सभी बिंदु एकरेखी होंगे ।

(आकृति 3.1)
इस स्थिति में $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}, \overline{\mathrm{CD}}$ और $\overline{\mathrm{DA}}$ के संयोग से एक रेखाखंड बना है । जिसे $\overline{\mathrm{AD}}$ या $\overline{\mathrm{DA}}$ कहा जाता है । $(\overline{\mathrm{AB}} \cup \overline{\mathrm{BC}} \cup \overline{\mathrm{CD}} \cup \overline{\mathrm{DA}}=\overline{\mathrm{AD}})$

(ii) तीन बिंदु एकरेखी होंगे ।

मान लो B, C और D एकरेखी हैं और C बिंदु, B और D बिंदुद्वय के बीच में है ।

(आवृति 3.2)
$(\overline{\mathrm{AB}} \cup \overline{\mathrm{BC}} \cup \overline{\mathrm{CD}} \cup \overline{\mathrm{DA}})=\angle \mathrm{ABD}$ इस स्थिति में हम $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}, \overline{\mathrm{CD}}$ और $\overline{\mathrm{DA}}$ को जोड़कर $\triangle \mathrm{ABD}$ प्राप्त करते हैं ।
(iii) कोई भी तीन बिंदु एकरेखी नहीं हैं ।

(a)

(b)

(c)
(आवृति 3.3)
यहाँ दी गई आवृततियाँ में $\mathrm{A}, \mathrm{B}, \mathrm{C}$ और D बिंदुआँ से कोई भी तीन बिंदु एक सरलरेखा में नहीं हैं ।
3.3 (a) और (b) आवृततियों $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}, \overline{\mathrm{CD}}$ और $\overline{\mathrm{DA}}$ - ये चार रेखाखंड खींचने से जो दो आकृतियाँ मिलती हैं, वे प्रत्येक एक-एक चतुर्भुज की आकृतियाँ हैं ।

तीसरी आकृति 3.3 (c) मैं $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}, \overline{\mathrm{CD}}$ और $\overline{\mathrm{DA}}$ रेखाखंड खींचने से जो आवृति मिलती है उसे चतुर्भुज नहीं कहा जा सकता ।

आकृति 3.3 (a) और (b) में हमें चतुर्भुज मिले, पर आकृति 3.3 (c) में चतुर्भुज की रचना नहीं हो सकी । चतुर्भुज बनने [आकृति 3.3 (a) और (b)] तथा चतुर्भुज बनने [आकृति 3.3(c)] की स्थितियों में क्या अंतर देख रहे हो ? $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}, \overline{\mathrm{CD}}$ और $\overline{\mathrm{DA}}$ के प्रतिच्छेद बिंदुओं की संख्या से यह अंतर स्पष्ट हो जाता है ।

आवृति 3.3 (a) और 3.3 (b), प्रत्येक में हम ऊपर दिए गए रेखाखंडों के कुल चार प्रतिच्छेद बिंदु देख पाते हैं । आकृति 3.3 (c) में हम $\mathrm{A}, \mathrm{B}, \mathrm{C}$ और D के अलावा और एक प्रतिच्छेद बिंदु ' P ' अर्थात कुरल पाँच प्रतिच्छेद बिंदु देखते हैं । इस स्थिति में $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}, \overline{\mathrm{CD}}$ और $\overline{\mathrm{DA}}$ में से $\overline{\mathrm{AB}}$ और $\overline{\mathrm{CD}}$ परस्पर को प्रांतबिंदु वे अलावा और एक बिंदु P पर प्रतिच्छेद करते हैं । अतएव चतुर्भुज की रचना संभव नहीं हुई ।
-उपर्युक्त पर्यवेक्षण के आधार पर हम चतुर्भुज की परिभाषा निरूपण करेंगें ।

चतुर्भुज की परिभाषा:

एक समतल पर स्थित चार अलगा-अलग बिंदुओं $\mathrm{A}, \mathrm{B}, \mathrm{C}$ और D मैं से यदि कोई भी तीन बिंदु एक सरलरेखा पर नहीं रहते तथा $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}, \overline{\mathrm{CD}}$ और $\overline{\mathrm{DA}}$ प्रांतबिंदुओं के अलावा अन्य किसी बिंदु पर परस्पर को प्रतिच्छेद नहीं करते, तब $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}, \overline{\mathrm{CD}}$ और $\overline{\mathrm{DA}}$ के संयोग को एक चतुर्भुज कहा जाता है ।

नोट : (1) ABCD चतुर्भुज को $\mathrm{BCDA}, \mathrm{CDAB}$, या DABC चतुर्भुज भी कहा जाता है ।
(2) ABCD चतुर्भुज एक समतल पर रचना की गई एक आकृति या एक समतलीय आवृति है ।
दी गई आवृति 3.4 में हम जो चतुर्भुज देखते हैं, उसे ABCD चतुर्भुज कहा जाता है, क्योंकि यहाँ

(आकृति 3.4) $\mathrm{AD}, \mathrm{DB}, \mathrm{BC}$ और CA प्रांतबिंदुओं के अलावा वे किसी दूसरे बिंदु पर परस्पर को प्रतिच्छेद नहीं करते ।
(3) $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}, \overline{\mathrm{CD}}$ और $\overline{\mathrm{DA}}-$ ये रेखाखंड बिन्दुओं के एक एक सेट हैं । इनके संयोग से बने ABCD चतुर्भुज भी बिंदुओं का सेट है । अतएव सेट की परिभाषा में हम लिख सकते हैं : ABCD चतुर्भुज $=\overline{\mathrm{AB}} \cup \overline{\mathrm{BC}} \cup \overline{\mathrm{CD}} \cup \overline{\mathrm{DA}}$ हैं ।
खुद करो :
(i) PQRS चतुर्भुज और PRQS चतुर्भुज - किन-किन रेखाखंड द्वारा बने हैं ?
(ii) $\mathrm{L}, \mathrm{M}, \mathrm{N}$ और R में से कोई भी एक सरलरेखा पर नहीं हैं । $\overline{\mathrm{LM}} \overline{\mathrm{MN}} \overline{\mathrm{NR}}$ और $\overline{\mathrm{RL}}$ प्रांत बिंदुओं के अलावा किसी दूसरे बिंदु पर प्रतिच्छेद नहीं करते । तब उन रेखाखंडो से संयोग से गठित आवृति को क्या कहा जाएगा ? बन गई आकृति का नाम क्या है ?

चतुर्भुज के संबंध में कुछ ज्ञात करने की बातें

(1) $\mathrm{A}, \mathrm{B}, \mathrm{C}$, और D बिंदुओं को ABCD चतुर्भुज के शीर्षबिंदु (Vertex) कहा जाता है ।
(2) $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}, \overline{\mathrm{CD}}$ और $\overline{\mathrm{DA}}$ रेखाखंडो को ABCD चतुर्भुज की भुजाएँ (Side) कहा जाता है । एक भुजा में दोनों प्रांतबिन्दुओं को क्रमिक शीर्ष (Consecutive vertices) कहा जाता है । क्रमिक शीर्ष न होनेवाले अन्य शीर्षों को विपरीत शीर्ष (Opposite vertices) कहा जाता है । ABCD चतुर्भुज के A और B, B और C, C और D, D और A क्रमिक शीर्ष हैं तथा A और C , B और D विपरीत शीर्ष हैं ।
(3) $\angle \mathrm{ABC}, \angle \mathrm{BCD}, \angle \mathrm{CDA}, \angle \mathrm{DAB}$ को चतुर्भुज ABCD के एक-एक कोण कहा जाता है । दो क्रमिक शीर्ष में बने कोण द्वय को क्रमिक कोण (consecutive angles) (जैसे- $\angle \mathrm{A}$ और $\angle \mathrm{B}$ तथा

विपरीत शीर्ष पर बने कोणद्वय को चतुर्भुज के विपरीत कोण (opposite angles) कहा जाता है । ABCD चतुर्भुज में $\angle \mathrm{A}$ और $\angle \mathrm{C}$ तथा $\angle \mathrm{B}$ और $\angle \mathrm{D}$ दो जोड़े विपरीत कोण हैं ।
(4) चतुर्भुज के परस्पर को प्रतिच्छेद करने वाली भुजा जोड़ी को संलग्न भुजा (adjacent sides) (जैसे $\overline{\mathrm{AB}}$ और $\overline{\mathrm{BC}}$) तथा परस्पर प्रतिच्छेदी न होने वाली प्रत्येक भुजा जोड़ी को (जैसे $\overline{\mathrm{AB}}$) विपरीत भुजाएँ (Opposite Sides) कहा जाता है।
(5) चतुर्भुज के विपरीत शीर्ष के संयोजक रेखाखंड को इसका विकर्ण (Diagonal) कहा जाता है। ABCD चतुर्भुज में $\overline{\mathrm{AC}}$ और $\overline{\mathrm{BD}}$ दो विकर्ण हैं ।

3.1.1 उत्तल चतुर्भज (Convex Ouardrilateral)

(a)

(b)

ABCD चतुर्भुज कहने से हम समझते हैं कि वह $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}, \overline{\mathrm{CD}}$ और $\overline{\mathrm{DA}}$ चारों रेखाखंडों का संयोग है अर्थात् $\mathrm{AB} \cup \mathrm{BC} \cup \mathrm{CD} \cup \mathrm{DA}$ हैं । हम इन चारों रेखाखंडों पर स्थित बिंदु ABCD चतुर्भुज की रचना करते हैं। त्रिभुज की तरह चतुर्भुज भी उत्तल सेट बन नहीं सकता । त्रिभुज स्वयं उत्तल सेट नहीं है, बरन् इसका अन्त:भाग ही उत्तल सेट है । यह हमें पिछले अध्याय में ज्ञात हुआ है । उसी प्रकार ABCD चतुर्भुज [3.5(a) और (b)] उत्तल सेट नहीं है । 3.5 (a) और (b) किसी भी आकृति में ध्यान दो कि B और D चतुर्भुज के दो बिंदु हैं। वे चतुभुंज को भुजाओं पर स्थित हैं । पर $\overline{\mathrm{BD}}$ के प्रांतबिन्दुओं के अलावा और कोई दूसरा बिंदु चतुर्भुज की भुजाओं में नहीं हैं । अतएव उत्तल सेट की परिभाषा के अनुसार चतुर्भुज उत्तल सेट बन नहीं सकता ।

पर ‘उत्तल चतुर्भुज’ शब्द का प्रयोग करते समय इसका उत्तल सेट के अर्थ में व्यवहार नहीं किया जाता । वुुछ विशेष प्रकार के चतुर्भुजों को चिह्नित करने के लिए 'उत्तल चतुर्भुज' नाम का व्यवहार किया जाता हैं।
उत्तल चतुर्भुज किसे कहते हैं :
आवृति $3.5(\mathrm{a})$ और (b) पर फिर से नजर डालिए। $3.5(\mathrm{a})$ आवृति में बने चतुर्भुज के दोनों विकर्ण ($\overline{\mathrm{AC}}$ और $\overline{\mathrm{BD}}$) परस्पर को प्रतिच्छेद करते हैं । उनका प्रतिच्छेद बिंदु P है, पर $3.5(\mathrm{~b})$ की आकृति में चतुर्भुज के दोनों विकर्ण (अर्थात् $\overline{\mathrm{AC}}$ और $\overline{\mathrm{BD}}$ खींच कर देखो) परस्पर को प्रतिच्छेद नहीं करते । पर $\overleftrightarrow{\mathrm{AC}}$ या $\overrightarrow{\mathrm{AC}}$ खींचने से वह $\overrightarrow{\mathrm{BD}}$ को प्रतिच्छेद करेगा । पर $\overleftrightarrow{\mathrm{AC}}$ या $\overrightarrow{\mathrm{AC}}$ चतुर्भुज का विकर्ण नहीं है । कर्ण एक रेखाखंड होता है । अतएव $\overline{\mathrm{AC}}$ को ही विकर्ण कहा जाता है ।

आकृति $3.5(\mathrm{a})$ के चतुर्भुज को 'उत्तल चतुर्भुज' कहते हैं । उत्तल चतुर्भुज की परिभाषा इस प्रकार है :

जिस चतुर्भुज के विकर्णद्वय परस्पर को प्रतिछेद करते हैं, उसे उत्तल चतुर्भुज कहते हैं ।
नोट : आवृतति $3.5(\mathrm{~b})$ का चतुर्भुज उत्तल नहीं है । हम अब सिर्प उत्तल चतुर्भुज पर चर्चा करेंगे । अतएव चतुर्भुज कहने से हम सिर्पन उत्तल चतुर्भुज को ही लेंगे ।

3.1.2 चतुर्भुज का अन्तःभाग और बहिर्भाग (Interior and Exterior of Quadrilateral)

 यहाँ सिर्पन उत्तल चतुर्भुज के अन्त:भाग के बारे में चर्चा की जाएगी । परिभाषा (उत्तल चतुर्भुज का अन्त :भाग) :किन्हीं दो विपरीत कोणों के अन्तःभाग को यानी अन्तःभाग के प्रतिच्छेद वे उत्तल चतुर्भुज का अन्त:भाग कहा जाता है ।

(a)

(b)

आवृति 3.6(a) को देखो । उत्तल चतुर्भुज के दो विपरीत कोण $\angle \mathrm{B}$ और $\angle \mathrm{D}$ के सामान्य अंत: भाग को ' x ' चिह्न से चिह्नित करके दर्शाया गया है, यह ABCD चतुर्भुज का अन्त:भाग है । विपरीत कोण $\angle \mathrm{A}$ और $\angle \mathrm{C}$ का सामान्य अन्तःभाग लेने पर भी हमें वही अन्तःभाग मिलता है । आवृति 3.6 (b) देखो ।

ध्यान दो कि $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ या चतुर्भुज की भुजा पर स्थित कोई अन्य बिंदु चतुर्भुज के अन्त:भाग में स्थित नहीं है ।

अन्तःभाग में स्थित बिंदु को चतुर्भुज का अन्तस्थ बिंदु (Interior Point) कहा जाता है । चतुर्भुज के समतल पर स्थित कोई बिंदु यदि चतुर्भुज की किसी भुजा पर नहीं रहता, या चतुर्भुज के अन्त:भाग में भी नहीं रहता, तब उसे चतुर्भुज का बहिस्थ बिंदु (Exterior Point) कहा जाता है । बहिस्थ बिंदुओं द्वारा बने सेट को चतुर्भुज का बहिर्भाग (Exterior) कहा जाता है ।

जाँच करके देखो

1. एक उत्तल चतुर्भुज का अन्त:भाग एक उत्तल सेट है (आकृति 3.6 से जाँच करके देखो।)

आवृति (3.7) एक उत्तल चतुर्भुज की आकृति नहीं है । (क्यों ?) इस प्रकार के चतुर्भुज के अन्त:भाग की परिभाषा तुम्हें ज्ञात नहों है । ज्यामितिक परिभाषा यद्यपि नहीं दी गई है, फिर भी अन्तःभाग को ' x ' चिह्न से चिह्नित करवे दर्शाया गया है । P और Q अन्त:भाग के दो बिंदु हैं। उनका संयोजक रेखाखंड चतुर्भुज के अन्त:भाग में नहीं है, यह आकृति को देखकर पता चलता है । अतएव इस प्रकार का अन्त:भाग उत्तल नहीं है । इस प्रकार के चतुर्भुज को उत्तल चतुर्भुज नहीं कहा जा सकता, यह पहले से तुम्हें ज्ञात है । अब तुम ‘उत्तल चतुर्भुज के नामकरण

(आवृति 3.7) की यथार्थता समझते होंगे । उत्तल चतुर्भुज का अर्थ है उत्तल अन्तःभाग वाला एक चतुर्भुज । अब चतुर्भुज कहने से उत्तल चतुर्भुज को समझना होगा।
2. चतुर्भुज का बहिर्भाग उत्तल सेट नहीं है । यह एक आसान परीक्षण है । खुद करके देखो ।
3. उत्तल चतुर्भुज के विकर्ण-द्वुय परस्पर को उसके अन्तःभाग में प्रतिच्छेद करते हैं ।

3.1.3 चतुर्भुज के आकार के विशिष्ट क्षेत्र (Quadrilateral Region)

पिछले अध्याय में तुम्हें ज्ञात हुआ है कि एक त्रिभुज और इसके अन्त :भाग के संयोग से उत्पन्न से को एक त्रिभुजाकार विशिष्ट क्षेत्र (Triangular Region) कहा जाता है । त्रिभुज के शीर्षबिंदुओं, कोणों और भुजाओं को क्रमशः इस त्रिभुजाकार क्षेत्र के शीर्षबिंदु कोण और भुजाएँ कहा जाता है । उसी प्रकार :
(a) एक चतुर्भुज और इसके अन्त:भाग के संयोग से उत्पन्न सेट को एक चतुर्भुज आकृतिवाला क्षेत्र (Quadrilaterals Region) कहा जाता है ।
(b) चतुर्भुज के शीर्षबिंदुओं, कोणों और भुजाओं को क्रमश उसे चतुर्भुजाकृति वाले क्षेत्र के शीर्षबिंदु, कोण और भुजाएँ कहा जाता है ।

3.2 विविध प्रकार के चतुर्भुज (Types of Quadrilateral)

तुम पहले अध्याय में पढ़ चुके निम्न तथ्यों को याद करो ।
(i) एक समतल पर स्थित दो सरलरेखाएँ परस्पर को प्रतिच्छेद न करने से उन दोनों को समानान्तर रेखा (Parallel Line) कहा जाता है । आवृति (3.8) में L_{1} और L_{2} दो समानांतर रेखाएँ है । (हम लिखते हैं $\mathrm{L}_{1} \| \mathrm{L}_{2}$)
(ii) L_{3} रेखा L_{1} के प्रति लंब होने से यह L_{2} के प्रति भी लंब होगा ।

(आवृति 3.8)
(iii) L_{1} और L_{2} दोनों रेखाओं के प्रति लंब L_{3} रेखा, L_{1} और L_{2} को क्रमश P और Q बिंदुओं पर प्रतिच्छेद करे तो L_{1} और L_{2} के बीच की दूरी $=\mathrm{PQ}$ होगी ।

हम उपर्युक्त तथ्यों का आवश्यकता पड़ने पर प्रयोग करेंगे ।
एक चतुर्भुज की भुजाओं और कोणों में विभिन्न संबंधों के आधार पर विशेष प्रकार के चतुर्भुजों की रचना (Special types of quadrilaterals) की जा सकती है । उन चतुर्भुजों को विशेष नाम से जाना जाता है ।

3.2.1 कुछ विशेष प्रकार के चतुर्भुज

1. समलम्ब चतुर्भुज (Trapezium)

एक ऐसा चतुर्भुज जिसमें एक जोड़ी सम्मुख भुजाएँ समांतर हो, समलंब चतुर्भुज कहलाता है । आकृति 3.8 में ABCD चतुर्भुज $\overline{\mathrm{AD}} \| \overline{\mathrm{BC}}$ हैं । अतएव ABCD चतुर्भुज एक समलम्ब चतुर्भुज कहलाता है ।

समलंब चतुर्भुज की दोनों समांतर भुजाओं के बीच की दूरी को समलम्ब चतुर्भुज की ऊँचाई (height) कहा जाता है । आवृति 3.8 में ABCD समलंब चतुर्भुज की ऊँचाई PQ है । (AM या या DN चै।

(आकृति 3.8)

(आकृति 3.9)

2. समांतर चतुर्भुज (Paralleloggram)

जिस चतुर्भुज की दो जोड़ी सम्मुख भुजाएँ समांतर होती हैं, वह समांतर चतुर्भुज कहलाता है ।
आवृति 3.9 में ABCD चतुर्भुज की सम्मुख भुजाएँ $\overline{\mathrm{AB}} \| \overline{\mathrm{CD}}$ हैं $\overline{\mathrm{AD}} \| \overline{\mathrm{BC}}$ हैं । इस चतुर्भुज को समांतर चतुर्भुज कहा जाता है ।

आकृति 3.9 में समांतर चतुर्भुज की सम्मुख भुजाएँ $\overline{\mathrm{AD}}$ और $\overline{\mathrm{BC}}$ के बीच की दूरी AM है । ओर $\overline{\mathrm{AB}}$ तथा $\overline{\mathrm{CD}}$ के बीच की दूरी CN है। ABCD समांतर चतुर्भुज की $\overline{\mathrm{BC}}$ या $\overline{\mathrm{AD}}$ को आधार मान लेने से AM को ऊँचाई के रूप में लिया जाएगा । उसी प्रकार $\overline{\mathrm{AB}}$ या $\overline{\mathrm{DC}}$ को आधार मानने से समांतर चतुर्भुज की ऊँचाई CN होगी ।
(i) आयतः जिस चतुर्भुज के प्रत्येक कोण समकोण होते हैं वह चतुर्भुज आयत कहलाता है । आगे यह प्रमाणित किया जाएगा कि प्रत्येक कोण समकोण होने पर सम्मुख भुजाएँ समांतर होंगी । अतएव आयत एक विशेष प्रकार का समांतर चतुर्भुज है, जिसके प्रत्येक कोण का परिमाण 90° होता है। आवृति 3.10 में एक आयत ABCD दिखाया गया है ।

(ii) सम चतुर्भुज (Rhombus) सम चतुर्भुज की चारों भुजाएँ बराबर लंबाई की होती हैं । आगे प्रमाणित किया जाएगा कि भुजाओं की लंबाई बराबर हों तो सम्मुख भुजाएँ भी समांतर होंगी । अतएव सम चतुर्भुज भी एक विशेष प्रकार का समांतर चतुर्भुज है । जिसकी सभी भुजाओं की लंबाई बराबर होती है । आवृति 3.11 में ABCD एक सम चतुर्भुज है ।

(आवृति-3.11)
(iii) वर्ग (square) जिस चतुर्भुज की चारों भुजाओं की लंबाई बराबर होती है और प्रत्येक कोण का परिमाण 90° होता है, वह वर्ग कहलाता है । अतएव वर्ग समकोणों वाला समचतुर्भुज है । आवृति 3.12 में ABCD एक वर्ग है ।

ऊपर चर्चा किए गए चतुर्भुजों के विविध प्रकार भेद को निम्न चार्ट में दर्शाया गया है । देखो:

अभ्यास - 3 (a)

1. निम्न उक्तियों में से जो उक्तियाँ सही हैं उनके सामने सही निशान (\checkmark) और, जो उक्तियाँ गलत हैं, उनके सामने गलत (×) निशान लगाइए:
(a) चतुर्भुज के दोनों विकर्ण परस्पर को चतुर्भुज के अन्तःभाग में प्रतिच्छेद करते हैं । \square
(b) किसी भी प्रकार वे चतुर्भुज के दोनों विकर्ण परस्पर को सदैव चतु:र्भुज वे अन्त:भाग में प्रतिच्छेद करते हैं ।
(c) जिस चतुर्भुज का अन्त:भाग एक उत्तल सेट है, वह चतुर्भुज भी एक उत्तल चतुर्भुज होता है।
(d) चतुर्भुज का प्रत्येक कर्ण एक उत्तल सेट होता है ।
(e) चतुर्भुज का बहिर्भाग एक उत्तल सेट होता है ।
(f) चतुर्भुज का बहिर्भाग बिंदुओं का सेट होता है ।
(g) एक चतुर्भुज और इसके अन्त:भाग के संयोग से बने सेट को चतुर्भुजावृति का विशिष्ट \square क्षेत्र कहा जाता है ।
(h) एक चतुर्भुज और इसके अन्त:भाग में कोई उभयनिष्ठ बिंदु नहीं होता । \square
(i) चार भुजाओं से बंद क्षेत्र को चतुर्भुज कहा जाता हैं ।
2. शून्यस्थान भरिए:
(a) एक समांतर चतुर्भुज के \qquad बराबर हों वह समचतुर्भुज कहलाता है ।
(b) एक \qquad के कोण समकोण हों तो वह आयत कहलाता है ।
(c) एक \qquad के कोण समकोण हों तो वह वर्ग कहलाता है ।
(d) एक आयत के \qquad बराबर हों, तो वह वर्ग कहलाता हैं।
(e) किसी चतुर्भुज की एक जोड़ी सम्मुख भुजाएँ समांतर हों तो वह \qquad कहलाएगा।
(f) किसी चतुर्भुज की दो जोड़ी सम्मुख भुजाएँ समांतर हों, तो वह \qquad कहलाएगा।
(g) समलंब चतुर्भुज के दोनों समांतर भुजाओं के बीच की दूरी को इसका \qquad कहा जाता है ।
(h) ABCD चतुर्भुज की $\overline{\mathrm{AB}}\|\overline{\mathrm{CD}}, \overline{\mathrm{AD}}\| \overline{\mathrm{BC}}, \mathrm{M} \angle \mathrm{ABC}=90^{\circ}$ है, चतुर्भुज \qquad कहलाएगा।
3. निम्न उक्तियों में से जो उक्तियाँ सही हैं, उनके सामने सही निशान (\checkmark) और, जो उक्तियाँ गलत हैं, उनके सामने गलत (×) निशान लगाइए:
(a) प्रत्येक आयत एक समांतर चतुर्भुज होता है ।
(b) प्रत्येक समांतर चतुर्भुज एक समलम्ब चतुर्भुज होता है ।
(c) प्रत्येक वर्ग एक समांतर चतुर्भुज होता है ।
(d) प्रत्येक समचतुर्भुज एक वर्ग होता है ।
(e) प्रत्येक समचतुर्भुज एक समांतर चतुर्भुज होता है ।
(f) प्रत्येक आयत एक वर्ग होता है ।
(g) प्रत्येक समलम्ब चतुर्भुज एक आयत होता है ।

3.3 चतुर्भुज संबंधी वुछ परीक्षण और निष्कर्ष

चतुर्भुज और चतुर्भुज संबंधी विभिन्र पदों की परिभाषाओं पर पहले से चर्चा हुई है। कुछ विशिष्ट प्रकार वे चतुर्भुजों को भी पहले से परिभाषित किया जा चुका है । इस अनुच्छेद में परीक्षण द्वारा चतुर्भुज संबंधी विभिन्न तथ्य ज्ञात करेंगे ।
(A) परीक्षण द्वारा तथ्य संग्रह

चतुर्भुज के कोणों के परिमाणों में संबंध परीक्षण-1 विभिन्न आकार के तीन उत्तल चतुर्भुजों की रचना करो । प्रत्येक चतुर्भुज का आवृति 3.13 की तरह नामकरण करो ।

(आवृति 3.13)
$\angle \mathrm{A}, \angle \mathrm{B}, \angle \mathrm{C}, \angle \mathrm{D}$ का परिमाण चाँद की सहायता से मापकर ज्ञात करो और सारणी भरो:

आकृति-ने	$\mathrm{M} \angle \mathrm{A}$	$\mathrm{M} \angle \mathrm{B}$	$\mathrm{M} \angle \mathrm{C}$	$\mathrm{M} \angle \mathrm{D}$	$\mathrm{M} \angle \mathrm{A}+\mathrm{M} \angle \mathrm{B}+\mathrm{M} \angle \mathrm{C}+\mathrm{M} \angle \mathrm{D}$
1					
2					
3					

सारणी 3.1
ऊपर की सारणी के अंतिम खानों से पता चलेगा या कि चतुर्भुज $\mathbf{A B C D}$ के $\mathrm{m} \angle \mathrm{A}+\mathrm{m} \angle \mathrm{B}$ $+\mathrm{m} \angle \mathrm{C}+\mathrm{m} \angle \mathrm{D}=360^{\circ}$
निष्कर्ष-1 एक चतुर्भुज के चारों कोणों के परिमाण का योगफल 360° होता । तुम्हारे लिए गति-विधियाँ :

1. एक कार्डबोर्ड़ लाकर उसपर एक चतुर्भुज की रचना करो ।
2. चतुर्भुज का एक विकर्ण खींचकर चतुर्भुज को दो त्रिभुजों में बाँटो ।
3. त्रिभुज के तीनों कोणों के परिमाण का योगफल 180° है । इस तथ्य का प्रयोग करके दर्शाओ कि चतुर्भुज के कोणों के परिमाण का योगफल 360° होगा।

खुद करो :

1. बगल की आवृति में $\mathrm{p}, \mathrm{q}, \mathrm{r}$ और s चिह्नित कोणों के परिमाण का योग ज्ञात करो ।
2. बगल की आवृति में r कोण का परिमाण 70° है p कोण का परिमाण 30° है, बताओ कि q और s कोणों वे परिमाण का योगफल कितना होगा ।

उदाहरण-1

ABCD उत्तल चतुर्भुज में $\mathrm{m} \angle \mathrm{A}=105^{\circ}, \mathrm{m} \angle \mathrm{B}=65^{\circ}, \mathrm{m} \angle \mathrm{C}$ $=60^{\circ}$ है तब $\mathrm{m} \angle \mathrm{D}$ का परिमाण ज्ञात करो ।

हल : ABCD चतुर्भुज के कोणों के परिमाण का योगफल $=360^{\circ}$ है ।

$\therefore \mathrm{m} \angle \mathrm{A}+\mathrm{m} \angle \mathrm{B}+\mathrm{m} \angle \mathrm{C}+\mathrm{m} \angle \mathrm{D}=360^{\circ}$
$\Rightarrow 105^{\circ}+65^{\circ}+60^{\circ}+\mathrm{M} \angle \mathrm{D}=360^{\circ}$
$\Rightarrow 230^{\circ}+\mathrm{m} \angle \mathrm{D}=360^{\circ}$
$\Rightarrow \mathrm{m} \angle \mathrm{D}=360^{\circ}-230^{\circ}=130^{\circ}$
$\therefore \mathrm{m} \angle \mathrm{D}$ का परिमाण 130° होगा ।
उदाहरण-2
एक चतुर्भुज के कोणों के परिमाण का अनुपात $2: 3: 5: 8$ है। प्रत्येक का परिमाण ज्ञात करो ।
हल : मान लो कि चतुर्भुज के कोणों को परिमाण है : $2 \mathrm{x}^{\circ}, 3 \mathrm{x}^{\circ}, 5 \mathrm{x}^{\circ}$ और $8 \mathrm{x}^{\circ}$
$\therefore 2 \mathrm{x}^{\circ}+3 \mathrm{x}^{\circ}+5 \mathrm{x}^{\circ}+8 \mathrm{x}^{\circ}=360^{\circ}\left(\therefore\right.$ चतुर्भुज चारों कोणों को परिमाण का योगफल 360° हैं)
$\Rightarrow 18 \mathrm{x}=360^{\circ}=\mathrm{x}=\frac{360}{18}=20$
\therefore कोणों का परिमाण क्रमश: $40^{\circ}, 68^{\circ}, 100^{\circ}$ और 160° होगा । (उत्तर)

परीक्षण -2

(B) समांतर चतुर्भुज की सम्मुख भुजाओं के संबंधका निरुपण

हमें परिभाषा से ज्ञात है कि समांतर चतुर्भुज की सम्मुख भुजाएँ परस्पर समांतर होते हैं । अब विभिन्न आकार के तीन समांतर चतुर्भुजों की रचना करवे उनकी सम्मुख भुजाओं भी लंबाई में रहे संबंधपर चर्चा करेंगे ।

समांतर चतुर्भुज की रचना-प्रणाली :
(i) तुमने पिछली कक्षा में समांतर सरलरेखा खींचना जानते हो । अब उसी प्रणाली से दो जोड़ी समांतर सरलरेखाएँ खींचो । अब तुम्हें ABCD समांतर चतुर्भुज मिलेगा ।

आकृति (3.14)
(ii) आकृति (3.14) की तरह और दो समांतर चतुर्भुजें की रचना करो। प्रत्येक का नाम ABCD दो । ABCD समांतर चतुर्भुज की एक जोड़ी सम्मुख भुजाएँ हैं:- $\overline{\mathrm{AB}}, \overline{\mathrm{CD}}$ । दूसरी जोड़ी सम्मुख भुजाएँ हैं $\overline{\mathrm{BC}}, \overline{\mathrm{AD}}$ उनकी लंबाई मापकर निम्न सारणी भरो :

आवृति नं	$\overline{\mathrm{AB}}$ की लंबाई (AB)	$\overline{\mathrm{CD}}$ की लंबाई (CD)	$\overline{\mathrm{BC}}$ की लंबाई (BC)	$\overline{\mathrm{AD}}$ की लंबाई (AD$)$
1				
2				
3				

सारणी-2

ऊपर की सारणी से पता चलेगा ABCD समांतर चतुर्भुज $\mathrm{AB}=\mathrm{CD}$ और $\mathrm{AD}=\mathrm{BC}$
निष्कर्ष -(2) समांतर चतुर्भुज की सम्मुख भुजाओं की लंबाई परस्पर बराबर होती है ।
टिप्पणी: तुमने जिन चतुर्भुजों की रचना की होगी उनमें हो सम्मुख भुजाओं की लंबाई में थोड़ी सी असमानता रही होगी । फिर भी उनकी माप प्राय बराबर होंगी। आकृति जितनी त्रुटिहीन होगी, सम्मुख भुजाओं की लंबाई की माप में असमानता कम होती जाएगी ।

उपनिष्कर्ष-1: समांतर चतुर्भुज की सम्मुख भुजाएँ समांतर हैं और समान लंबाई की होती हैं
उपनिष्कर्ष-2: किसी चतुर्भुज की एक जोड़ी सम्मुख भुजाएँ समांतर हों और समान लंबाईवाली हों तो चतुर्भुज समांतर चतुर्भुज कहलाता है ।

उदाहरण-3 : PQRS समांतर चतुर्भुज का परिमाप ज्ञात करो, जब $\mathrm{PQ}=12$ से.मी. और RQ $=7$ से.मी होगी ।

हल : PQRS समान्तर चतुर्भुज में $\mathrm{PQ}=\mathrm{RS}=12$ से.मी. हैं ।
$\mathrm{RQ}=\mathrm{SP}=7$ से.मी. हैं ।
(समान्तर चतुर्भुज की सम्मुख भुजाओं की लंबाई बराबर होती है ।)
PQRS समान्तर चतुर्भुज का परिमाप $=\mathrm{PQ}+\mathrm{QR}+\mathrm{RS}+\mathrm{SP}$

$$
=12+7+12+7=38 \text { से.मी. }
$$

\therefore दिए गए समांतर चतुर्भुज का परिमाप 38 से.मी. होगा ।

परीक्षण -3

(c) समांतर चतुर्भुज के सम्मुख कोणों में संबंध

पहले की तरह तीन भिन्न-भिन्न आवृति के तीन समांतर चतुर्भुज की रचना करो । प्रत्येक का नाम ABCD दो । चाँद की सहायता से मापकर प्रत्येक आकृति $\mathrm{M} \angle \mathrm{A}, \mathrm{M} \angle \mathrm{B}, \mathrm{M} \angle \mathrm{C}, \mathrm{M} \angle \mathrm{D}$ ज्ञात करो ।

मिली माप को नीचे की सारणी में भरो ।

आवृति नं	$\mathbf{m} \angle \mathbf{A}$	$\mathbf{m} \angle \mathbf{B}$	$\mathbf{m} \angle \mathbf{C}$	$\mathbf{m} \angle \mathbf{D}$
1				
2				
3				

सारणी - 3.3
ऊपर की सारणी से पता चलेगा कि समांतर चतुर्भुज ABCD में $\mathrm{M} \angle \mathrm{A}=\mathrm{M} \angle \mathrm{C}$ और $\mathrm{M} \angle \mathrm{B}$ $=\mathrm{M} \angle \mathrm{D}$ होंगे ।

निष्कर्ष-3: समांतर चतुर्भुज के सम्मुख कोणों का परिमाण परस्पर बराबर होता है ।

उपनिष्कर्ष : समांतर चतुर्भुज के आसन्न कोण संपूरक होते हैं । अर्थात् दोनों कोणों का योगफल 180° होता है :

ऊपर की सारणी के दो आसन्न कोणों के परिमाण को जोड़ने से 180° होगा । कोणो को त्रुटिहीन रूप से मापना चाहिये ।

उदाहरण-4 : आकृति 3.17 में दिए गए समान्तर चतुर्भुज ABCD में $\mathrm{m} \angle \mathrm{B}=45^{\circ}$ हो तो अन्य कोणों का परिमाण ज्ञात करो ।

हल : $\mathrm{m} \angle \mathrm{D}=\mathrm{m} \angle \mathrm{B}=45^{\circ}$ (सम्मुख कोण)

$$
\mathrm{m} \angle \mathrm{~B}+\mathrm{m} \angle \mathrm{D}=45^{\circ}+45^{\circ}=90^{\circ}
$$

अतएव $\mathrm{m} \angle \mathrm{C}+\mathrm{m} \angle \mathrm{A}$

$$
\begin{aligned}
& =360^{\circ}-(\mathrm{m} \angle \mathrm{~B}+\mathrm{m} \angle \mathrm{D}) \text { (निष्कर्ष-1) } \\
& =360^{\circ}-90^{\circ}=270^{\circ} \\
& \text { पर } \mathrm{m} \angle \mathrm{~A}=\mathrm{m} \angle \mathrm{C} \text {, (निष्कर्ष-3) } \\
& \mathrm{m} \angle \mathrm{~A}=\mathrm{m} \angle \mathrm{C}=\frac{270^{\circ}}{2}=135^{\circ} \text { (उत्तर) }
\end{aligned}
$$

(आवृति 3.17)

ध्यान दो : $\mathrm{m} \angle \mathrm{B}+\mathrm{m} \angle \mathrm{C}=45^{\circ}+135^{\circ}=180^{\circ}$

$$
\mathrm{m} \angle \mathrm{~A}+\mathrm{m} \angle \mathrm{D}=45^{\circ}+135^{\circ}=180^{\circ}
$$

अत: हमें ज्ञात हुआ :

समांतर चतुर्भुज के आसन्न कोण द्वाय परस्पर संपूरक होते हैं ।

उदाहरण-5 : आकृति 3.18 में ABCD एक समांतर चतुर्भुज है । C पर ABCD समांतर चतुर्भुज के बहिर्भाग के कोण की माप 50° है । समांतर चतुर्भुज के कोणों की माप ज्ञात करो ।

हल :

$$
\mathrm{m} \angle \mathrm{BCD}=180^{\circ}-50^{\circ}=130^{\circ} \text { (आसन्न कोण) }
$$

$$
\mathrm{m} \angle \mathrm{BAD}=\mathrm{m} \angle \mathrm{BCD}=130^{\circ} \text { (निष्कर्ष- } 3 \text {) }
$$

$$
\mathrm{m} \angle \mathrm{ABC}+\mathrm{m} \angle \mathrm{ADC}=360^{\circ}-(\mathrm{m} \angle \mathrm{BAD}+\mathrm{m} \angle \mathrm{BCD})
$$

$$
\begin{aligned}
& =360^{\circ}-\left(130^{\circ}-130^{\circ}\right) \\
& =360^{\circ}-260^{\circ}=100^{\circ}
\end{aligned}
$$

पर $\mathrm{m} \angle \mathrm{ABC}=\mathrm{m} \angle \mathrm{ADC}$ (निष्कर्ष-3)

$$
\therefore \mathrm{m} \angle \mathrm{ABC}=\mathrm{m} \angle \mathrm{ADC}=\frac{100^{\circ}}{2}=50^{\circ}
$$

(आवृतति-3.18)

उदाहरण-6 : एक समांतर चतुर्भुज वे दो आसन्न कोणों की माप में से एक दूसरे का दुगुना है । तब समांतर चतुर्भुज वे प्रत्येक की माप ज्ञात करो ।

हल : बगल में आवृति 3.19 में ABCD एक समांतर चतुर्भुज है । इसका $\mathrm{M} \angle \mathrm{A}=\mathrm{M} \angle \mathrm{C}$ और $\mathrm{M} \angle \mathrm{B}=\mathrm{M} \angle \mathrm{D}$ है ।

(आवृतति-3.19)
यहाँ $\angle \mathrm{B}$ और $\angle \mathrm{C}$ दी आसन्र कोण है ।
प्रश्न के अनुसार $\angle \mathrm{C}$ की माप $\angle \mathrm{B}$ की माप से दुगुनी है ।
मान लो कि $\mathrm{M} \angle \mathrm{B}=x^{\circ} \quad \therefore \mathrm{M} \angle \mathrm{C}=2 x^{\circ}$ होगा ।
हमें ज्ञात है $\mathrm{M} \angle \mathrm{A}+\mathrm{M} \angle \mathrm{B}+\mathrm{M} \angle \mathrm{C}+\mathrm{M} \angle \mathrm{D}=360^{\circ}$
$\Rightarrow 2 x^{\circ}+x^{\circ}+2 x^{\circ}+x^{\circ}=360^{\circ}$
$\therefore(\mathrm{M} \angle \mathrm{B}=\mathrm{M} \angle \mathrm{D}$ और $\mathrm{M} \angle \mathrm{C}=\mathrm{M} \angle \mathrm{A}$ हैं)
$\Rightarrow 6 x^{\circ}=360^{\circ} \Rightarrow x^{\circ}=60^{\circ}$
$\therefore \angle \mathrm{A}, \angle \mathrm{B}, \angle \mathrm{C}$ और $\angle \mathrm{D}$ कोणों की माप क्रमश: $120^{\circ}, 60^{\circ}, 120^{\circ}$ और 60° होगी । (उत्तर) परीक्षण-4

समांतर चतुर्भुज वे विकर्णों में संबंध

पहले की प्रणाली की तरह भिन्न-भिन्न आवृति के तीन समांतर चतुर्भुजों की रचना करो । उन्हें आवृति 3-20 के अनुसार नाम दो । प्रत्येक समांतर चतुर्भुज के विकर्ण $\overline{\mathrm{AC}}$ और $\overline{\mathrm{BD}}$ खींचो । दोनों कर्णों के प्रतिच्छेद बिंदु का नाम ' O ' दो ।
$\overline{\mathrm{AO}}, \overline{\mathrm{BO}}, \overline{\mathrm{CO}}, \overline{\mathrm{DO}}$ की लंबाई मापकर सारणी भरो ।

(आवृति 3.20)

आकृति नं.	$\mathbf{A O}$	$\mathbf{C O}$	$\mathbf{B O}$	$\mathbf{D O}$
1				
2				
3				

सारणी 3.4

सारणी से पता चलेगा कि ABCD समांतर चतुर्भुज में $\mathrm{AO}=\mathrm{CO}$ और $\mathrm{BO}=\mathrm{DO}$ होंगी । अर्थात् $\overline{\mathrm{AC}}$ और $\overline{\mathrm{BD}}$ कर्णद्वय परस्पर को समद्विभाजित करते हैं ।

निष्कर्ष-4 समांतर चतुर्भुज के विकर्ण द्वाय परस्पर को समद्धिभाजित करते हैं ।

 उदाहरण- 7 :PQRS समांतर चतुर्भुज में $\overline{\mathrm{PR}}$ और $\overline{\mathrm{QS}}$ विकर्ण द्वय का प्रतिच्छेद बिंदु O है ।
$\mathrm{PQ}=16$ से.मी., $\mathrm{OR}=(\mathrm{x}+\mathrm{y})$ से.मी. $\mathrm{SO}=20$ से.मी.
$\mathrm{QO}=(\mathrm{y}+7)$ से.मी. है । x और y का मान ज्ञात करो ।
हल : PQRS समांतर चतुर्भुज में $\mathrm{SO}=\mathrm{QO}$ और $\mathrm{PO}=\mathrm{RO}$ हैं ।
$\therefore 20=\mathrm{y}+7$ और $16=x+y$ हैं ।
$\mathrm{y}+7=20, \mathrm{y}=20-7=13$
फिर $16=x+\mathrm{y} \Rightarrow x+13=16$
$\Rightarrow x=16-13=3$
$\therefore x$ और y का मान क्रमशः 13 और 3 हैं ।

सम चतुर्भुज के विकर्णों में संबंध

(आवृति-3.21)

हमें ज्ञात है कि समांतर चतुर्भुज के विकर्ण-द्वय परस्पर को समद्विभाजित करते हैं । हम समांतर चतुर्भुज की भुजा पर विभिन्न शर्तों का आरोप करके इसे आयत, सम चतुर्भुज या वर्ग जैसे चतुर्भुज बनाते हैं। उनके कर्णों में भी वैसा संबंध है। पहले सम चतुर्भुज के कर्ण-द्वय में पाए जाने वाले संबंध पर चर्चा करेंगे ।
सम चतुर्भुज की रचना प्रणाली

तुम्हारे लिए गति-विधियाँ

(i) समांतर चतुर्भुज की रचना के अनुरूप सेट स्कवेयर की सहायता से दो समांतर सरल रेखा $\overleftrightarrow{\mathrm{PQ}}$ और $\overleftrightarrow{\mathrm{RS}}$ खींचो ।

(ii) $\overleftrightarrow{\mathrm{PQ}}$ और $\overleftrightarrow{\mathrm{RS}}$ रेखाद्वय का कोई एक प्रतिच्छेदक $\overline{\mathrm{AB}}$ खींचो, जैसे $\overleftrightarrow{\mathrm{RS}}$ पर A और $\overleftrightarrow{\mathrm{PQ}}$ पर B रहेगा ।
(iii) $\overleftrightarrow{\mathrm{RS}}$ पर D बिंदु ऐसे चिह्नित करो, जैसे $\mathrm{AB}=\mathrm{AD}$ होगा । (यह सोपान समांतर चतुर्भुज को सम चतुर्भुज में परिणत करता है।)
(iv) D बिंदु पर $\overline{\mathrm{AB}}$ से समांतर $\overline{\mathrm{DC}}$ खींचो जैसे $\overleftrightarrow{\mathrm{PQ}}$ पर C रहेगा । (समांतर चतुर्भुज की रचना के सोपान (iii) के अनुरूप) । अब ABCD सम चतुर्भुज की रचना हो गई ।

परीक्षण-5 : सम चतुर्भुज के कर्ण-द्वुय में संबंध निरूपण :
भिन्न-भिन्न आकृति के तीन सम चतुर्भुजों की रचना करो । उनका आकृति 3.22 के अनुसार नामकरण करो । प्रत्येक में विकर्ण $\overline{\mathrm{AC}}$ और $\overline{\mathrm{BD}}$ खींचो । प्रतिच्छेद बिंदु का नामॅ ' O ' दो । $\angle \mathrm{AOD}$ की माप ज्ञात करो और $\overline{\mathrm{AO}}, \overline{\mathrm{CO}}, \overline{\mathrm{BO}}, \overline{\mathrm{DO}}$ की लंबाई मापो । मापों को निम्न सारणी में भरो ।

आकृति नं	$\mathbf{m} \angle \mathbf{A O D}$	$\mathbf{A O}$	$\mathbf{C O}$	$\mathbf{B O}$	$\mathbf{D O}$
1					
2					
3					

सारणी- 3.5
सारणी से पता चलेगा कि ABCD सम चतुर्भुज में $\mathrm{m} \angle \mathrm{AOD}=90^{\circ}$ होगा । अर्थात् $\overline{\mathrm{AC}}$ और $\overline{\mathrm{BD}}$ विकर्ण-द्वय परस्पर प्रति लंब हैं । (1)

फिर $\mathrm{AO}=\mathrm{CO}$, और $\mathrm{BO}=\mathrm{DO}$ हैं ।
अर्थात् $\overline{\mathrm{AC}}$ और $\overline{\mathrm{BD}}$ कर्ण द्वय परस्पर को समद्विभाजित करते हैं । (2)
ऊपर के (1) और (2) को देखकर हम निम्ननिष्कर्ष पर पहुँचे -
निष्कर्ष-5: एक सम चतुर्भुज के विकर्ण-द्वूय परस्पर को समकोण में समद्विभाजित करते हैं । आयत के कर्णद्वय में संबंध :

आयत की एक विशेषता है कि इसके प्रत्येक कोण समकोण होते हैं । इस विशेषता का विकर्णों से क्या संबंध है, उसे निम्न परीक्षण के माध्यम से चर्चा करेंगे ।
आयत की रचना-प्रणाली

तुम्हारे लिए गति-विधियाँ

(i) समांतर चतुर्भुज की रचना में सोपान (i) के अनुरूप $\overleftrightarrow{\mathrm{PQ}} \| \overleftrightarrow{\mathrm{RS}}$ रेखाद्वय खींचो ।
(ii) $\overleftrightarrow{\mathrm{RS}}$ पर कोई दो बिंदु A और B चिह्नित करो ।
(iii) A और B पर $\overleftrightarrow{\mathrm{RS}}$ के प्रति लंब की रचना करो । $\overleftrightarrow{\mathrm{PQ}}$ पर रचित लंबद्वय के प्रतिच्छेद बिंदुओं को क्रमश D और C नाम दो ।

अब ABCD आयत की रचना हो गई ।

(आवृति-3.23)

परीक्षण-6 : आयत के विकर्ण द्वय में संबंध निरूपण :
ऊपर बताई गई प्रणाली के अनुसार भिन्र भिन्न आवृतियों के तीन आयतों की रचना करो । प्रत्येक का आवृति 3.23 के अनुरूप नामकरण करो । प्रत्येक में विकर्ण $\overline{\mathrm{AC}}$ और $\overline{\mathrm{BD}}$ खींचकर प्रतिच्छेद बिंदु का नाम ' O ' दो ।

अब $\overline{\mathrm{AC}}, \overline{\mathrm{BD}}, \overline{\mathrm{AO}}, \overline{\mathrm{CO}}, \overline{\mathrm{BO}}, \overline{\mathrm{DO}}$ की लंबाई मापकर निम्न सारणी में लिखो ।

आकृति नं	AC	BD	AO	CO	BO	DO
1						
2						
3						

$$
\text { सारणी - } 3.6
$$

सारणी से पता चलेगा कि ABCD आयत में $\mathrm{AC}=\mathrm{BD} \ldots$...(1)

$$
\text { फिर } \mathrm{AO}=\mathrm{CO} \text { और } \mathrm{BO}=\mathrm{DO} \ldots . \text { (2) }
$$

(1) और (2) पर ध्यान देकर हम निम्न निष्कर्ष पर पहुँच सकते हैं ।

निष्कर्ष-6: एक आयत के विकर्ण द्वाय बराबर लबाई के होते हैं। वे दोनों परस्पर को समद्विभाजित करते हैं।
उदाहरण-8 : PQRS आयत के विकर्ण द्वय का प्रतिच्छेद बिंदु ' O ' है । जब $\mathrm{OQ}=(2 x+$ 4) इकाई और $\mathrm{OP}=(3 x+1)$ इकाई के होंगे तब x का मान ज्ञात करके विकर्णों की लंबाई ज्ञात करो ।

हल : PQRS आयत के विकर्णों का प्रतिच्छेद बिंदु O है ।
यहाँ $\mathrm{PR}=\mathrm{QS} \Rightarrow \frac{1}{2} \mathrm{PR}=\frac{1}{2} \mathrm{QS}$
$\Rightarrow \mathrm{PO}=\mathrm{QO} \Rightarrow 3 \mathrm{x}+1=2 \mathrm{x}+4$

(आवृति-3.24)
$\Rightarrow 3 x-2 x=4-1 \Rightarrow x=3$ इकाई
$\therefore \mathrm{PQ}=3$ इकाई, $\Rightarrow 2 \mathrm{PO}=6$ इकाई $=\mathrm{PR}=6$ इकाई
$\therefore \mathrm{PR}=\mathrm{QS}=6$ इकाई $(\therefore$ आयत के कर्ण बराबर लंबाई के होते हैं)

वर्ग के कर्णों में संबंध

वर्ग की भुजाएँ बराबर लंबाई की होती हैं और प्रत्येक कोण समकोण होता है । अर्थात् यहाँ सम चतुर्भुज और आयत दोनों की विशेषताओं का समन्वय हुआ है । अब इसके दोनों कर्णों में पाए जाने वाले संबंध पर ध्यान देंगे ।
वर्ग की रचना-प्रणाली - तुम्हारे लिए गति-विधियाँ
(i) आयत की रचना के सोपान (i) के अनुरूप $\overleftrightarrow{\mathrm{PQ}} \| \overleftrightarrow{\mathrm{RS}}$ खींचो ।
(ii) $\overleftrightarrow{\mathrm{RS}}$ पर एकबिंदु A दर्शाओ । A पर $\overleftrightarrow{\mathrm{RS}}$ के प्रति लंब की रचना करो । उस लंब और $\overleftrightarrow{\mathrm{PQ}}$ वे प्रतिच्छेद बिंदु का नाम D दो ।
(iii) $\overleftrightarrow{\mathrm{RS}}$ पर B बिंदु दर्शाओ, जैसे $\mathrm{AB}=\mathrm{AD}$ होगी ।
(iv) B बिंदु पर $\overleftrightarrow{\mathrm{RS}}$ के प्रति लंब की रचना करो । इस लंब और $\overleftrightarrow{\mathrm{PQ}}$ के प्रतिच्छेद बिंदु का नाम ' C ' दो । अब हमें ABCD वर्ग प्राप्त हुआ ।

आकृति (3.25)

परीक्षण-7: वर्ग के विकर्णों में संबंध निरूपण

पहले की प्रणाली की तरह तीन वर्गों की रचना करके उनका आकृति 3.25 के अनुरूप नामकरण करो । प्रत्येक वर्ग में कर्ण $\overline{\mathrm{AC}}$ और $\overline{\mathrm{BD}}$ खींचो और प्रतिच्छेद बिंदु का नाम ' O ' दो ।

प्रत्येक वर्ग से $\overline{\mathrm{AC}}, \overline{\mathrm{BD}}, \overline{\mathrm{AO}}, \overline{\mathrm{CO}}, \overline{\mathrm{BO}}, \overline{\mathrm{DO}}$ की लंबाई और $\angle \mathrm{AOD}$ की माप ज्ञात करवे उन्हें सारणी-3.7 में लिखो ।

आकृति नं	$\mathrm{m} \angle \mathrm{AOD}$	AC	BD	AO	CO	BO	DO
1							
2							
3							

सारणी - 3.7
ऊपर की सारणी से पता चला कि ABCD वर्ग में $\mathrm{M} \angle \mathrm{AOD}=90^{\circ}$ है । अर्थात विकर्ण $\overline{\mathrm{AC}}$ और $\overline{\mathrm{BD}}$ परस्पर प्रति लंब हैं । $\mathrm{AC}=\mathrm{BD}$ हैं \qquad
फिर $\mathrm{AO}=\mathrm{OC}$; और $\mathrm{BO}=\mathrm{OD} \ldots \ldots$. (2)
(1) और (2) पर ध्यान देकर हम निम्न निष्कर्ष पर पहुँच सवेंगे ।

निष्कर्ष-7: एक वर्ग के विकर्ण बराबर लंबाई के होते हैं और वे एक दूसरे को समकोणों में समद्विभाजित करते हैं ।

समांतर चतुर्भुज, सम चतुर्भुज, आयत और वर्ग-इनके विकर्णों में उपलब्ध संबंध पर ध्यान दो ।
(i) समांतर चतुर्भुज, आयत, वर्ग-इनवेว विकर्ण एक दूसरे को समद्विभाजित करते हैं।
(ii) समचतुर्भुज, वर्ग वे विकर्ण एक दूसरे को समकोणों में समद्विभाजित करते हैं ।
(iii) आयत और वर्ग वे विकर्ण बराबर लंबाई वे होते हैं ।
(iv) वर्ग के कर्ण द्वय में ऊपर वे सभी संबंध विद्यमान हैं । अर्थात् वर्ग के विकर्ण बराबर लंबाई के होते हैं, एक दूसरे के प्रति लंब हैं और एक दूसरो को समद्विभाजित करते हैं।

3.4 विभिन्न विशिष्ट चतुर्भुजों के विकर्णों में उपलब्ध संबंधों का विश्लेषण :

(i) समांतर चतुर्भुज के विकर्ण एक दूसरे को समद्विभाजित करते हैं । (वे बराबर लंबाई के या एक दूसरे के प्रति लंब नहों हो सकते ।)
(ii) सम चतुर्भुज के विकर्ण एक दूसरे को समकोणों में समद्विभाजित करते हैं ।
(वे बराबर लंबाई वाले नहीं भी हो सकते है ।)
(iii) आयत के कर्ण बराबर लंबाई के होते हैं और एक दूसरे को समद्विभाजित करते हैं । (एक दूसरे पर लंब नहीं हो सकते ।)
(iv) वर्ग के कर्ण बराबर लंबाईवाले हैं । एक दूसरे के प्रति लंब है, एक दूसरे को समद्विभाजित करते हैं। ध्यान दो कि वर्ग के कर्णों में तीन संबंध हैं, जबकि दूसरे के क्षेत्र में एक या दो संबंध होते हैं ।

अभ्यास -3(b)

1. शून्य स्थान भरो :
(a) \qquad के विकर्ण एक दूसरे को समद्विभाजि करते हैं ।
(b) \qquad के विकर्ण एक दूसरे के प्रति लंब हैं और वे एक दूसरे को समद्विभाजित करते हैं ।
(c) \qquad के विकर्ण एक दूसरे के प्रति लंब हैं, एक दूसरे को समद्विभाजित करते हैं और बराबर लंबाई के होते हैं।
(d) \qquad के विकर्ण बराबर लंबाई वाले हैं और एक दूसरे की समद्विभाजित करते हैं ।
(e) \qquad के विकर्ण एक दूसरे को समद्विभाजित करते हैं, लेकिन वे बराबर लंबाईवाले नहीं हो सकते ।
(f) एक समांतर चतुर्भुज के विकर्ण बराबर लंबाई वाले हों तो इसके सम्मुख कोण-द्वुय की माप का योगफल \qquad है ।
(g) एक चतुर्भुज के विकर्ण बराबर लंबाई वाले हैं, एक दूसरे के प्रति लंब हैं और एक दूसरे को समद्विभाजित करते हैं तो इसके दो आसन्न कोणों की माप का योगफल \qquad होगा ।
2. निम्न उक्तियों में से समांतर चतुर्भुज के लिए जो सत्य हों, उनके पास ' T ' लिखो और जो असत्य हैं, उनके पास ' F ' लिखो :
(a) दोनों सम्मुख कोणों की माप बराबर होती है ।
(b) सम्मुख भुजाओं की लंबाई बराबर है ।
(c) विकर्ण द्वय के प्रतिच्छेद बिंदु संबंधी कोई निश्चित तथ्य नहीं होता ।
(d) दो संलग्न कोण परस्पर संपूरक होते हैं ।
(e) दो संलग्न कोणों की माप बराबर होती हैं ।
(f) प्रत्येक कोण समकोण होता है ।
(g) एक विकर्ण से उत्पन्न दोनों त्रिभुजों में से एक की भुजाओं की लंबाई क्रमशः दूसरे की अनुरूप भुजाओं की लंबाई के बराबर होगी ।
3. निम्न उक्तियों में से समांतर चतुर्भुज के लिए जो सत्य हों, उनके पास ' T ' लिखो और जो असत्य हैं, उनके पास ' F ' लिखो :
(a) समांतर चतुर्भुज के सम्मुख कोणों की माप बराबर होती हैं ।
(b) समांतर चतुर्भुज के विकर्ण एक दूसरे के समकोण में समद्विभाजित करते हैं ।
(c) कोई भी कोण समकोण न होने वाले सम चतुर्भुज के विकर्ण बराबर लंबाई के नहों होंगे ।
(d) संलग्न भुजाएँ बराबर न होने वाले आयत के विकर्ण बराबर लंबाई के होते है ।
(e) वर्ग वे विकर्ण बराबर लंबाई वाले होते हैं और एक दूसरे के प्रति लंब होते हैं ।
(f) ऐसा कोई समांतर चतुर्भुज नहीं है, जिसके विकर्ण एक दूसरे को समद्विभाजित न करते हों ।
4. ABCD समांतर चतुर्भुज का $\mathrm{M} \angle \mathrm{A}=70^{\circ}$ है, $\angle \mathrm{B}, \angle \mathrm{C}$ और $\angle \mathrm{D}$ की माप ज्ञात करो ।
5. ABCD समांतर चतुर्भुज के दो संलग्न कोणों की माप का अनुपात $2: 3$ है । समांतर चतुर्भुज के प्रत्येक कोण की माप ज्ञात करो ।
6. एक चतुर्भुज के कोणों की मापों का अनुपात $1: 3: 7: 9$ है। चतुर्भुज के प्रत्येक कोण की माप ज्ञात करो ।
7. एक चतुर्भुज के कोणों की माप बराबर हैं। चतुर्भुज के विकर्ण एक दूसरे को समकोणों में समद्विभाजित करते हैं। चतुर्भुज किस प्रकार का चतुर्भुज होगा ?
8. एक समचतुर्भुज के एक कोण की माप 60° है । दर्शांओ कि सम चतुर्भुज के क्षुद्रतर बिकर्ण की लंबाई इसकी एक भुजा की लंबाई के बराबर होगा ।
9. एक चतुर्भुज के दो संलग्न कोणों की माप क्रमशः 60° और 80° हैं। अन्य कोण द्वय की माप बराबर होने से उनकी माप ज्ञात करो ।
10. ABCD समांतर चतुर्भुज के $\angle \mathrm{C}$ और $\angle \mathrm{D}$ की माप (डिग्री में) दी गई है । दी गई माप को लेकर प्रत्येक कोण की माप ज्ञात करो ।

(आवृति-3.26)
11. दी गई आकृति 3.27 में ABCD और PBNM दो समांतर चतुर्भुज दिए गए हैं। $\mathrm{m} \angle \mathrm{D}=70^{\circ}$ हैं $\mathrm{m} \angle \mathrm{M}$ और $\mathrm{m} \angle \mathrm{MNB}$ की माप ज्ञात करो ।

12. एक समांतर चतुर्भुंज के दो आसन्र कोणों में से एक की माप दूसरे की माप से तीन गुनी है । इसके कोणों की माप ज्ञात करो ।
13. आकृति 3.28 में $\mathrm{ABCD}, \mathrm{APQR}$ और TSCV एक एक समांतर चतुर्भुज हैं ।
(i) APQR के किन किन कोणों की माप $\mathrm{m} \angle \mathrm{C}$ के बराबर हैं ।
(ii) TSCV के किन किन कोणों की मापm $\angle \mathrm{A}$ वे बराबर हैं ।

(आवृतति-3.28)
(iii) $\mathrm{m} \angle \mathrm{T}=110^{\circ}$ है, ABCD समांतर चतुर्भुज के कोणों की माप ज्ञात करो ।
14. ABCD आयत वे विकर्ण द्वय एक दूसरे को ' O ' बिंदु पर प्रतिच्छेद करते हैं । $\mathrm{AO}=(2 x+3)$ इकाई है । $\mathrm{OD}=(3 \mathrm{x}$ $+1)$ इकाई है, x का मान ज्ञात करो और दोनों विकर्णों की लंबाई ज्ञात करो।

(आवृति-3.29)
15. बगल में ABCD सम चतुर्भुज दिया गया हैं । इसके x, y और z का मान ज्ञात करो ।
16. (a) सेट स्क्वेयर, स्वेวल और चाँद का व्यवहार करके एक सम चतुर्भुज की रचना करो, जिसवे एक कोण की माप 60° हो और भुजा की लंबाई 4 से.मी. हो ।
(b) सेटस्क्वेयर, स्कल और चाँद का व्यवहार करके एक

(आवृतति-3.30) समांतर चतुर्भुज की रचना करो, जिसके एक कोण की माप 70° हो और दो संलग्न भुजाओं की लंबाई 6.3 से.मी. और 4.5 इकाई हो ।
(c) सेटस्क्वेयर, स्वेल और चाँद का व्यवहार करवे एक वर्ग की रचना करो जिसकी भुजा की लंबाई 3.2 से.मी. हो ।

रचना (CONSTRUCTION)

4.1 कुछ मौलिक रचनाएँ

ज्यामिति में स्वेल और चाँद का व्यवहार क्रमशः रूलर निष्कर्ष और चाँद निष्कर्ष द्वारा अनुमोदित है । ये दोनों निष्कर्ष ज्यामितीय चर्चा में संख्या तत्व के व्यवहार की तर्व संगतता का प्रतिपादन करते हैं । यूक्लीड संख्या तत्व से परिचति थे, पर उन्होंने ज्यामिति में रूलर या चाँद वे निष्कर्ष जैसी किसी संख्या संबंधित निष्कर्ष को स्वीकार नहीं किया था । ज्यामितीय रचना के लिए यूक्लीड के द्वारा स्वीवृतत दो यंत्र हैं रूलर और परकार । (रूलर का अर्थ है सीधा किनारा, जैसे स्वेल का किनारा) अतएव रूलर और परकार का व्यवहार करके जो रचना की जाती है उसी यूक्लीडीय रचना (Euclidean construction) कहा जाता है ।

अब हम यूक्लीड का अनुसरण करते हुए सिर्प रूलर और परकार का व्यवहार करके वुच रचनाएँ करेंगे और मापने वे लिए सिर्फ स्वेल और चाँद का व्यवहार करोंगे ।

पिछली कक्षा में तुम निम्नलिखित वुछ मौलिक रचनाओं के बारे में जानते हो । उनका अभ्यास भी तुमने किया है। वे हैं -

1. रूलर और परकार की सहायता से रचना

क) दिए गए दो बिंदुओं से होकर सरलरेखा की रचना ।
ख) दिए गए दोनों बिंदुओं का संयोजक रेखाखंड की रचना ।
ग) दिए गए रेखाखंड का समद्विभाजन
घ) दिए गए कोण का समद्विभाजन
ङ) दिए गए कोण की बराबर माप वाले दूसरे कोण की रचना
च) दी गई रेखा से समांतर करके उसके बहिर्भाग के एक बिंदु से होकर एक रेखा की रचना ।
छ) दी गई सरलरेखा के बहिर्भाग के एक बिंदु से उस सरल रेखा के प्रति लंब की रचना ।
इस अध्याय में हम विभिन्न तथ्यों के आधार पर त्रिभुज और चतुर्भुज की रचना वे बारे में जानेंगे । पिछली कक्षा में तुमने भी विभिन्न त्रिभुजों और चतुर्भुजों की रचना की है ।

4.2 त्रिभुज की रचना

एक त्रिभुज के तीन कोण और तीन भुजाएँ होती हैं । पर एक त्रिभुज की रचना करने वे लिए इन सभी की माप की जरूरत नहों पड़ती । एक त्रिभुज की तीनों भुजाओं की लंबाई ज्ञात होने पर त्रिभुज की रचना की जा सकती है । उसी प्रकार एक कोण की माप और दो भुजाओं की लंबाई स्पष्ट हो जाने के बाद त्रिभुज की रचना करना संभव है। त्रिभुज के दो कोणों की माप और एक भुजा की लंबाई ज्ञात होने से त्रिभुज की रचना की जा सकेगी । मोटे तौर पर त्रिभुज की रचना करने के लिए परस्पर से स्वतंत्र तीन माप हैं। उदाहरण स्वरूप त्रिभुज के तीन कोणों की माप परस्पर से स्वतंत्र माप नहीं है। क्योंकि दो माप ज्ञात हो तो तीसरे की माप स्वतः ज्ञात हो जाएगी। क्योंकि तीन कोणों की माप का योगफल 180° होता है। पर तीन भुजाओं की लंबाई परस्पर से अलग है । इसलिए तीन भुजाओं की लंबाई ज्ञात हो तो त्रिभुज की रचना करना संभव है । पर तीन कोणों की माप को लेकर एकाधिक त्रिभुजों की रचना संभव है ।

हम यहाँ वुछछ माप ज्ञात होने पर त्रिभुज की रचना के बारे में चर्चा करेंगे ।
(1) त्रिभुज की तीन भुजाओं की लंबाई ज्ञात हो तो (किन्हों दो भुजाओं की लंबाई का योगफल तीसरी भुजा से बृहत्तर है।)
(2) त्रिभुज की दो भुजाओं की लंबाई और संलग्न कोण की माप ज्ञात हो तो ।
(3) एक भुजा की लंबाई और संलग्न दोनों कोणों की माप ज्ञात हो तो ।
(4) एक समकोण त्रिभुज के विकर्ण की लंबाई और किसी एक भुजा की लंबाई ज्ञात हो तो । इन मापों के अलावा अन्य मापों को लेकर भी त्रिभुज की रचना करना संभव है । उन्हें बाद में जानोगे ।

सूचना : त्रिभुज की रचना करने से पहले एक रफ आवृति की रचना करवे उसका नामकरण किया जाता है। दिए गए भागों की माप को संबंधित भाग के बगल में दर्शाने को विश्लेषण आवृति भी कहते हैं । इससे पता चल जाता है कि पहले कौन से भाग की रचना करनी होगी । अपनी सुविधा के लिए पहले एक आवृति बनाई जाती है । पर यह रचना प्रश्नोतर की दृष्टि से जरूरी नहीं है । पर इसकी सहायता से रचना के विभिन्न सोपानों को आसानी से तय किया जा सकता है ।

याद रखो : $\triangle \mathrm{ABC}$ में $\angle \mathrm{A}, \angle \mathrm{B}$ और $\angle \mathrm{C}$ की सम्मुख भुजाओं को क्रमश: a, b और c संकेत से प्रकट किया जाता है ।

त्रिभुज की रचना-1: तीन भुजाओं की लंबाई ज्ञात होने पर त्रिभुज की रचना (भुजा-भुजा-भुजा):
उदाहरण-1: $\triangle \mathrm{ABC}$ की रचना करो, जिसकी $\mathrm{a}=7$ से.मी. $\mathrm{B}=6$ से.मी. और $\mathrm{C}=5$ से.मी. हो ।

रचना प्रणाली :
(आवृतति 4.1) (विश्लेषण आवृति)

(i) 7 से.मी. लंबाई वाली $\overline{\mathrm{BC}}$ की रचना करो ।
(iii) C को केन्द्र लेकर 6 से.मी. त्रिज्या वाला एक चाप की रचना करो, जैसे कि B को वेन्द्र करके रचित चाप को यह प्रतिच्छेद करेगा । प्रतिच्छेद बिंदु का नाम A दो ।

$$
\mathrm{B} \longrightarrow \text { (आवृतति 4.4(a) }^{\backslash} \mathrm{C}
$$

(iv) $\overline{\mathrm{AB}}$ और $\overline{\mathrm{AC}}$ को जोड़ो । अब आवश्यक $\triangle \mathrm{ABC}$ प्राप्त हुआ ।

टिप्पणी : B और C बिंदु को वेनन्द्र करके रचित चाप द्वय $\overline{\mathrm{BC}}$ के दोनों तरफ एक दूसरे को प्रतिच्छेद करेंगे । परिणाम-
 स्वरूप A बिंदु की दो स्थितियाँ मिलेंगी । पर A की किसी एक स्थिति को लेकर $\triangle \mathrm{ABC}$ की रचना करना पर्याप्त होगा । नोट:

तुम्हारे जानने के लिए सोपानों के अनुसार रचनाओं को दर्शाया गया है । पर एक ही स्थान पर एक ही आवृति में (रचना प्रणाली को अनुसरण करवे) त्रिभुज की रचना करना उचित है । खुद करो:

नीचे प्रत्येक प्रश्न में तीन-तीन भुजाओं की लंबाई की माप दी गई है । किन तीनों की माप लेकर त्रिभुज की रचना करना संभव नहीं हैं, दर्शाओ :
(1) 7 से.मी., 5 से.मी., 6.3 से.मी
(2) 7 से.मी., 4.5 से.मी., 12 से.मी.
(3) 6.2 से.मी., 9.5 से.मी., 9.5 से.मी.

वि.द्र.- त्रिभुज की किन्हीं दो भुजाओं की लंबाई का जोड़ तीसरी भुजा से वृहत्तर है ।
अभ्यास- 4 (a)
(प्रत्येक रचना के लिए सिर्फ स्वेगल और परकार का व्यबहार करो ।)
(1) ABC त्रिभुज की रचना करो, जिसमें $\mathrm{a}=7$ से.मी., $\mathrm{b}=3.5$ से.मी. और $\mathrm{c}=5$ से.मी. है । इसवे शीर्ष बिंदु A से $\overline{\mathrm{BC}}$ के प्रति लंब की रचना करो । उस लंब की माप ज्ञात करो ।
(2) $\triangle \mathrm{ABC}$ की $\mathrm{AB}=\mathrm{AC}=\mathrm{BC}=6.1$ से.मी. है । त्रिभुज की रचना करवे इनवे कोणों की माप ज्ञात करो ।
(3) $\triangle \mathrm{ABC}$ की रचना करो, जिसकी $\mathrm{BC}=5$ से.मी.; $\mathrm{AB}=\mathrm{AC}=6.3$ से.मी. है । त्रिभुज की रचना करके $\overline{\mathrm{BC}}$ के आसन्न कोण-द्वय की माप ज्ञात करो ।
(4) $\triangle \mathrm{LMN}$ की रचना करो, जिसकी $\mathrm{LM}=5$ से.मी. है, $\mathrm{LN}=4.7$ से.मी. है और $\mathrm{MN}=6.1$ से.मी. है । त्रिभुज की रचना करवेว इसवेว कोणों की माप ज्ञात करो । कौन सा कोण वृहत्तर है, दर्शाओ ।
(5) एक त्रिभुज की रचना करो, जिसकी तीन भुजाओं की लंबाई क्रमशः 5.8 से.मी., 4.7 से.मी. और 3.9 से.मी. हैं । त्रिभुज की रचना करके 5.8 से.मी. और 4.7 से.मी लंबाई वाली भुजाओं के आसन्न कोण के समद्विभाजक की रचना करो ।
(6) $\mathrm{a}=6$ से.मी., $\mathrm{b}=7$ से.मी., और $\mathrm{c}=8$ से.मी. $\triangle \mathrm{ABC}$ की रचना करो । त्रिभुज की भुजाओं के समद्विभाजक लंबों की रचना करो ।
(रचना त्रुटिशून्य होने पर समद्विभाजक लंब एक दूसरे को एक ही बिंदु पर प्रतिच्छेद करेंगे ।)

त्रिभुज की रचना-2

दो भुजाओं की लंबाई और आसत्र कोण की माप ज्ञात हो तो त्रिभुज की रचना (भुजा-कोण-भुजा)
उदाहरण-2: $\triangle \mathrm{PQR}$ की रचना करो, जिसमें $\mathrm{PQ}=8.7$ से.मी.; $\mathrm{PR}=5.5$ से.मी. हो, $\mathrm{m} \angle \mathrm{P}$ $=60^{\circ}$ हो ।

(आवृति-4.5)

(आवृति-4.6)
(1) 8.7 से.मी. लंबाई वाली $\overline{\mathrm{PQ}}$ खींचो ।
(2) $\overrightarrow{\mathrm{PX}}$ की रचना करो जैसे कि $\mathrm{m} \angle \mathrm{XPQ}=60^{\circ}$ हो ।
(3) P को केन्द्र लेकर 5.5 से.मी. त्रिज्या वाला चाप खींचो, जैसे कि वह $\overrightarrow{\mathrm{PX}}$ को प्रतिच्छेद करेगी । प्रतिच्छेद बिंदु का नाम R दो । $\overline{\mathrm{RQ}}$ खींचो । अब आवश्यक $\triangle \mathrm{PQR}$ प्राप्त हुआ ।

अभ्यास- 4(b)

(1) $\triangle \mathrm{ABC}$ की रचना करो, जिसकी $\mathrm{a}=5.6$ से.मी. है $\mathrm{m} \angle \mathrm{B}=60^{\circ}, \mathrm{c}=6.3$ से.मी. हो । त्रिभुज की रचना करवे $\angle \mathrm{C}$ का समद्विभाजक की रचना करो ।
(2) $\triangle \mathrm{ABC}$ में $\mathrm{AB}=\mathrm{AC}=5.7$ से.मी. है $\mathrm{m} \angle \mathrm{A}=120^{\circ}$ है । त्रिभुज की रचना करके $\angle \mathrm{B}$ और $\angle \mathrm{C}$ की माप ज्ञात करो । उनमें पाए गए संबंध को स्पष्ट करो ।
(3) $\triangle \mathrm{PQR}$ की रचना करो, जिसकी $\mathrm{PQ}=7$ से. H. . है । $\mathrm{PR}=5.6$ से.मी. है, $\mathrm{M} \angle \mathrm{P}=45^{\circ}$ हो । त्रिभुज की रचना करके R बिंदु से $\overline{\mathrm{PQ}}$ के प्रति लंब की रचना करो ।
(4) $\triangle \mathrm{ABC}$ की रचना करो, जैसे $\mathrm{m} \angle \mathrm{B}=75^{\circ}$ हो, $\mathrm{AB}=3$ से.मी. हो, $\mathrm{BC}=4$ से.मी. हो ।

त्रिभुज की रचना- 3

(एक भुजा की लंबाई और उस भुजा के आसन्न कोण दूय की माप दी गई हो तो त्रिभुज की रचना । (कोण-भुजा-कोण)

उदाहरण-3 :
$\triangle \mathrm{ABC}$ की रचना करो, जिसकी $\mathrm{BC}=7$ से.मी., $\mathrm{m} \angle \mathrm{B}=75^{\circ}, \mathrm{m} \angle \mathrm{C}=45^{\circ}$

र

(i) 7 से.मी. लंबाई वाली $\overline{\mathrm{BC}}$ खींचो ।
(ii) $\overrightarrow{\mathrm{BX}}$ की रचना करो, जैसे कि $\mathrm{m} \angle \mathrm{CBX}=75^{\circ}$ हो ।
(iii) $\overrightarrow{\mathrm{CY}}$ की रचना करो, जैसे कि $\mathrm{m} \angle \mathrm{BCY}=45^{\circ}$ हो ।
(iv) $\overrightarrow{\mathrm{BX}}$ और $\overrightarrow{\mathrm{CY}}$ के प्रतिच्छेद बिंदु का नाम A दो । अब आवश्यक $\triangle \mathrm{ABC}$ प्राप्त हुआ ।

सूचना: $\triangle \mathrm{ABC}$ की $\overline{\mathrm{BC}}$ भुजा की लंबाई और $\angle \mathrm{B}$ तथा $\angle \mathrm{A}$ की माप ज्ञात हो तो $\mathrm{m} \angle \mathrm{C}$ $=180^{\circ}-(\mathrm{m} \angle \mathrm{A}+\mathrm{m} \angle \mathrm{B})$ ज्ञात करना संभव है । परिणाम-स्वरूप त्रिभुज की एक भुजा और तीनों कोणों में से किन्हीं दो की माप ज्ञात हो तो त्रिभुज की रचना करना संभव है ।

अभ्यास- 4(c)

1. $\triangle \mathrm{ABC}$ की रचना करो, जिसकी $\mathrm{a}=7.5$ से.मी., $\mathrm{m} \angle \mathrm{B}=75^{\circ}$ और $\mathrm{m} \angle \mathrm{C}=30^{\circ}$ हो ।
2. $\triangle \mathrm{ABC}$ की रचना करो, जिसकी $\mathrm{m} \angle \mathrm{A}=60^{\circ}, \mathrm{m} \angle \mathrm{B}=75^{\circ}$ और $\mathrm{C}=5.9$ से.मी. हो ।
3. $\triangle \mathrm{ABC}$ की $\mathrm{BC}=6.5$ से.मी. है $\overline{\mathrm{BC}}$ के प्रत्येक आसन्र कोणों की माप $=75^{\circ}$ । त्रिभुज की रचना कर के $\overline{\mathrm{AB}}$ और $\overline{\mathrm{AC}}$ की लंबाई ज्ञात करो ।
4. $\triangle \mathrm{PQR}$ की रचना करो, जिसकी $\mathrm{PQ}=5.7$ से.मी. हो, $\mathrm{m} \angle \mathrm{P}=60^{\circ}$ और $\mathrm{m} \angle \mathrm{Q}=45^{\circ}$ हो ।
5. $\mathrm{b}=7$ से.मी. $\mathrm{m} \angle \mathrm{A}=60^{\circ}, \mathrm{m} \angle \mathrm{B}=75^{\circ}$ हैं । $\triangle \mathrm{ABC}$ की रचना करो ।

त्रिभुज की रचना- 4

विकर्ण और एक भुजा की लंबाई ज्ञात हो, तो समकोण त्रिभुज की रचना । (समवोण-कर्ण-भुजा)

उदाहरण- 4

ABC समकोण त्रिभुज के विकर्ण $\overline{\mathrm{AC}}$ की लंबाई= 7.5 से.मी. है। $\mathrm{BC}=6$ से.मी. है। त्रिभुज की रचना करो ।

विश्लेषण आकृति

रचित आकृति

रचना प्रणाली :

(i) 6 से.मी. लंबाई वाली $\overline{\mathrm{BC}}$ खींचो ।
(ii) $\overrightarrow{\mathrm{BX}}$ की रचना करो, जैसे कि $\mathrm{m} \angle \mathrm{XBC}=90^{\circ}$ होगा ।
(iii) C को केन्द्र करके 7.5 से.मी. त्रिज्या लेकर एक चाप खींचो । वह $\overrightarrow{\mathrm{BX}}$ को प्रतिच्छेद करे ।
(iv) $\overline{\mathrm{AC}}$ खींचो । अब आवश्यक $\triangle \mathrm{ABC}$ प्राप्त हुआ ।

अभ्यास- 4(d)

1. ABC समकोण त्रिभुज की रचना करो, जिसमें विकर्ण $\overline{\mathrm{AC}}$ की लंबाई 5 से.मी. और $\mathrm{BC}=$ 3 से.मी. हो । त्रिभुज की रचना करवे $\overline{\mathrm{AB}}$ की लंबाई मापो ।
2. एक समकोण त्रिभुज की रचना करो, जिसके विकर्ण की लंबाई 8 से.मी. है और अन्य एक भुजा की लंबाई 5.1 से.मी. है।
3. $\triangle \mathrm{ABC}$ की रचना करो, जैसे कि $\mathrm{AB}=\mathrm{BC}=5.6$ से.मी. है । B बिंदुं से $\overline{\mathrm{AC}}$ के प्रति रचित लंब का पादबिंदु D है। $\mathrm{BD}=4$ से.मी. है ।
(सूचना: $\triangle \mathrm{ABD}$ में $\angle \mathrm{D}$ समकोण है । इसका विकर्ण $\overline{\mathrm{AB}}$ की लंबाई दी गई है । त्रिभुज रचना4 की प्रणाली से पहले $\triangle \mathrm{ABD}$ की रचना करो । उसके बाद $\overline{\mathrm{AD}}$ पर C बिंदु निरूपण करो $\triangle \mathrm{ABC}$ की रचना करो ।
4. $\triangle \mathrm{ABC}$ में $\mathrm{AC}=5$ से.मी. है $\overline{\mathrm{AB}}$ के प्रति $\overline{\mathrm{CD}}$ लंब है । $\mathrm{CD}=4$ से.मी. है, $\mathrm{BC}=6$ से.मी है। त्रिभुज की रचना करो ।

4.3 चतुर्भुज की रचना

हम त्रिभुज की तीन स्वतंत्र माप लेकर एक निश्चित त्रिभुज की रचना कर सकते हैं । जैसे कि (i) त्रिभुज की तीन भुजाओं की लंबाई, (ii) दो भुजाएँ और आसन्न कोण की माप (iii) एक भुजा की लंबाई और दो कोणों की माप (iv) समकोण त्रिभुज के विकर्ण और एक भुजा की लंबाई ।

अब प्रश्न उठता है कि क्या एक चतुर्भुज के लिए चार स्वतंत्र माप ज्ञात होने पर एक निश्चित चतुर्भुज की रचना करना संभव होगा ?

त्रिभुज की तीन भुजाओं की लंबाई की तरह चतुर्भुज की चार भुजाओं की लंबाई भी चार स्वतंत्र माप हैं । हम त्रिभुज की तीन भुजाओं की लंबाई जानने से एक निश्चित त्रिभुज की रचना कर सकते हैं । क्या चतुर्भुज की चार भुजाओं की लंबाई ज्ञात होने से एक निश्चित चतुर्भुज की रचना कर सकते हैं ?

तुम्हारे लिए गति-विधियाँ :

(क)

(ख)
(आवृっति-4.11)
(i) चार बाँस की खपचियाँ या कागज की पट्टियाँ लो । प्रत्येक खपची के दो सिरों पर दो छेद करो । खपची के पिन या स्वूू से सिरों को जोड़ो । प्रदर्शित आकृति 4.11 (क) तरह एक चतुर्भुज की रचना करो । इस चतुर्भुज की चार भुजाएँ दी गई लंबाई के अनुरूप हैं।
(ii) अब चतुर्भुज के दो सम्मुख शीर्षों को (A और C) दबाओ । तुम देख सकोगे कि चतुर्भुज की आवृति बदलती जाती है, यद्यपि इसकी चार भुजाओं की लंबाई में कोई परिवर्तन नहीं हुआ है। आकृति 4.11 (ख) को देखो । इस प्रकार वे दबाव डालकर एकाधिक आवृतत वाले भिन्न भिन्न चतुर्भुजों की रचना की जा सकती है ।
(iii) इस पर्यवेक्षण से क्या ज्ञात हुआ ?
(इससे हमें ज्ञात हुआ कि एक चतुर्भुज की सिर्पन चार भुजाओं को लेकर एक निश्चित चतुर्भुज की रचना नहीं की जा सकेगे ।

(आवृति 4.11-ग)
(iv) अब एक खपची लो । पहले से रचित चतुर्भुज के दो सम्मुख शीर्षों B और D से उसे जोड़ो। $\overline{\mathrm{BD}} \mathrm{ABCD}$ चतुर्भुज का विकर्ण होगा ।
(v) अब खपचियों से बने चतुर्भुज को चारों ओर से दबाव डालकर देखो । अब रचित चतुर्भुज की आवृति बदलना संभव नहीं है ।
(vi) इससे तुमने क्या देखा ?

वि.द्र.- एक दूसरे से असंबंधित पाँच भागों की माप ज्ञात हो तो निश्चित चतुर्भुज की रचना की जा सके गी

चुतुर्भुज की रचना संबंधी विश्लेषण :

दी गई माप का व्यवहार करवे एक चतुर्भुज की रचना करने से पहले एक चतुर्भुज का एक आवृति (विश्लेषण आकृति) की रचना करके दि गई मापों को उस आवृति में दर्शाओ । इस एक आवृति को देखकर तय करो कि पहले चतुर्भुज वे किस भाग की रचना करोगे या किस भुजा से रचना प्रारंभ करोगे । यह तय करने से चतुर्भुज की रचना आसान होगा ।
चतुर्भुज की रचना-1 : चारों भुजाएँ और एक विकर्ण की लंबाई दी गई हो तो चतुर्भुज की रचना । उदाहरण- 5

ABCD चतुर्भुज की रचना करो, जिसमें $\mathrm{AB}=4$ से.मी. हो $\mathrm{BC}=6$ हो, $\mathrm{CD}=5$ से.मी. हो, AD $=5.5$ से.मी. हो और विकर्ण $\mathrm{AC}=8$ से.मी. हो ।

विश्लेषण : ABCD चतुर्भुज की एक एक आवृति बनाओ । उसमें $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}, \overline{\mathrm{CD}}, \overline{\mathrm{AD}}$ और $\overline{\mathrm{AC}}$ की मापों को दर्शाओ । $\triangle \mathrm{ABC}$ और $\triangle \mathrm{ACD}$ प्रत्येक की तीन-तीन भुजाएँ दी गई हैं । अब हम विकर्ण के दोनों तरफ ABC और ACD त्रिभुज-द्वय की रचना कर सकेंगे । इससे हमें ABCD चतुर्भुज प्राप्त होगा ।

(आवृतति-4.12)
विश्लेणण-आकृति

रचित आकृति

रचना प्रणाली

(i) 8 से.मी. लंबाई वाली $\overline{\mathrm{AC}}$ खींचो ।
(ii) A को केन्द्र करवे 4 से.मी. त्रिज्या वाला एक चाप की रचना करो ।
(iii) C को वेनन्द्र करवे 6 से.मी. त्रिज्या लेकर एक चाप की रचना करो, जैसे कि वह A को वेनन्द्र करवे रचित चाप को प्रतिच्छेद करेगी । प्रतिच्छेद बिंदु का नाम B दो । $\overline{\mathrm{AB}}$ और $\overline{\mathrm{BC}}$ खींचो ।
(iv) अब A को वेनन्द्र करके 5.5 से.मी. त्रिज्या वाला अन्य एक चाप खींचो, जो $\overline{\mathrm{AC}}$ के जिस तरफ B है, उसके सम्मुख तरफ होगा ।
(v) C को केन्द्र करवे 5 से.मी. त्रिज्या वाला अन्य एक चाप खींचो । वह A को केन्द्र करके रचित 5.5 से.मी. त्रिज्या वाले चाप को प्रतिच्छेद करेगी । प्रतिच्छेद बिंदु का नाम D दो ।
(vi) $\overline{\mathrm{CD}}$ और $\overline{\mathrm{AD}}$ खींचो ।

अब आवश्यक चतुर्भुज ABCD प्राप्त हुआ ।
सूचना: रफ आकृति से हमें ज्ञात हुआ कि $\mathrm{AB}+\mathrm{BC}>\mathrm{AC}$ है (क्योंकि 4 से.मी. +6 से.मी. >8 से.मी. हैं) और $\mathrm{AD}+\mathrm{DC}>\mathrm{AC}$ होगी । (क्योंकि 5.5 से.मी. +5 से.मी. >8 से.मी. हैं) इसलिए चतुर्भुज की रचना करना संभव हुआ ।

अभ्यास-4(e)

1. ABCD चतुर्भुज की रचना करो, जैसे कि $\mathrm{AB}=4$ से.मी. हो, $\mathrm{BC}=3$ से.मी. हो, AD $=2.5$ से.मी. हो, $\mathrm{CD}=3$ से.मी. हो और $\mathrm{BD}=4$ से.मी. हो ।
2. ABCD चतुर्भुज की रचना करो, जैसे कि $\mathrm{AB}=\mathrm{BC}=5.5$ से.मी., $\mathrm{CD}=4$ से.मी., AD $=6.3$ से.मी. और $\mathrm{AC}=9.4$ से.मी. हो । चतुर्भुज की रचना करवे $\overline{\mathrm{BD}}$ की लंबाई ज्ञात करो ।
3. एक सम चतुर्भुज की रचना करो जिसकी भुजाएँ 4.5 से.मी. हों। एक विकर्ण की लंबाई 6 से.मी. हो । समलंब चतुर्भुज की रचना करके इसके अन्य विकर्ण की लंबाई ज्ञात करो ।
4. ABCD समांतर चतुर्भुज की रचना करो जिसकी $\mathrm{AB}=3$ से.मी., $\mathrm{BC}=4.2$ से.मी. और कर्ण $\overline{\mathrm{AC}}=6$ से.मी. हो ।

खुद करो:

ABCD चतुर्भुज की $\mathrm{AB}=3$ से.मी., $\mathrm{BC}=4$ से.मी. $\mathrm{CD}=5.5$ से.मी. $\mathrm{DA}=6$ से.मी. और $\mathrm{BD}=9$ से.मी. हों । क्या चतुर्भुज की रचना करना संभव है ? यदि ‘ना’ उत्तर है, तब कारण दर्शाओ ।

चतुर्भुज की रचना-२

तीन भुजाओं की लंबाई और दो विकर्णों की लंबाई दी गई हो ता चतुर्भुज की रचना:
उदाहरण-6
ABCD चतुर्भुज की रचना करो जैसे कि $\mathrm{BC}=4.5$ से.मी., $\mathrm{CD}=5$ से.मी., $\mathrm{DA}=5.5$ से.मी., $\mathrm{AC}=6.5$ से.मी और $\mathrm{BD}=7$ से.मी. हो ।

(आवृति 4.15) रचित आकृति

विश्लेषण आकृति से स्पष्ट हो जाता है $\triangle \mathrm{ACD}$ और $\triangle \mathrm{BCD}$ की तीनों भुजाओं की लंबाई दी गई है अतएव दोनों त्रिभुज की रचना के माध्यम से चतुर्भुज की रचना करना संभव होगा ।

रचना प्रणाली :
(i) 5 से.मी. लंबाई वाली $\overline{\mathrm{CD}}$ खींचो ।
(ii) C को केन्द्र करके 4.5 से.मी. त्रिज्या लेकर $\overline{\mathrm{CD}}$ के किसी एक तरफ एक चाप खींचो ।
(iii) D को केन्द्र करके 7 से.मी. त्रिज्या लेकर एक चाप खींचो; जैसे कि वह C को केन्द्र करके रचित चाप को प्रतिच्छेद करे । प्रतिच्छेद बिंदु का नाम B दो ।
(iv) फिर C को केन्द्र करके 6.5 से.मी. त्रिज्या का एक चाप $\overline{\mathrm{CD}}$ के जिस तरफ ' B ' है, उसी तरफ खींचो ।
(v) D को वेनन्द्र करवे 5.5 से.मी. त्रिज्या लेकर एक चाप खींचो । वह C बिंदु पर (iv) में रचित चाप को प्रतिच्छेद करेगा । प्रतिच्छेद बिंदु का नाम A दो ।
(vi) $\overline{\mathrm{DA}}, \overline{\mathrm{AB}}, \overline{\mathrm{BC}}, \overline{\mathrm{AC}}$ और $\overline{\mathrm{BD}}$ खींचो । अब आवश्यक माप वाला चतुर्भुज ABCD प्राप्त होगा ।

अभ्यास 4(f)

1. ABCD चतुर्भुज की रचना करो जिसकी $\mathrm{AB}=7.0$ से.मी., $\mathrm{BC}=5.5$ से.मी., $\mathrm{AB}=7.4$ से.मी., $\mathrm{AC}=8.0$ से.मी. और $\mathrm{BD}=8.5$ से.मी. हों ।
2. PQRS चतुर्भुज की रचना करो, जिस में $\mathrm{QR}=7.5$ से.मी., $\mathrm{RP}=\mathrm{PS}=6.0$ से.मी., RS $=5$ से.मी. और $\mathrm{QS}=10$ से.मी. हों ।
3. $\mathrm{BC}=7.5$ से.मी., $\mathrm{AC}=\mathrm{AD}=8.3$ से.मी., $\mathrm{CD}=6.5$ से.मी. और $\mathrm{BD}=11.0$ से.मी. हों । ABCD चतुर्भुज की रचना करो ।
4. ABCD चतुर्भुज की रचना करो, जिसकी $\mathrm{BC}=2.6$ से.मी., $\mathrm{CA}=4.0$ से.मी., $\mathrm{AD}=3.5$ से.मी., $\mathrm{CD}=2$ से.मी और $\mathrm{BD}=3.0$ से.मी. हों ।
5. ABCD चतुर्भुज में $\mathrm{AB}=4.5$ से.मी., $\mathrm{CD}=6.0$ से.मी., $\mathrm{AD}=6.3$ से.मी., $\mathrm{BD}=5.0$ से.मी., $\mathrm{AC}=5.5$ से.मी. है । चतुर्भुज की रचना करो ।

चतुर्भुज की रचना- 3

तीन भुजाओं की लंबाई और उन भुजाओं के बीच वे दो कोणों की माप दी गई हो तो चतुर्भुज की रचना:

उदाहरण -7

ABCD चतुर्भुज की रचना करो, जिसकी $\mathrm{AB}=4.5$ से.मी., $\mathrm{BC}=3.5$ से.मी., $\mathrm{CD}=5$ से.मी., $\mathrm{m} \angle \mathrm{B}=45^{\circ}$ और $\mathrm{m} \angle \mathrm{C}=150^{\circ}$ हो ।

(आवृति 4.16) विश्लेणण आवृति
4.5 से. मी.

(आवृっति 4.17) रचित आवृतति

रचना-प्रणाली

(i) 3.5 से.मी. लंबाई वाली $\overline{\mathrm{BC}}$ खींचो ।
(ii) C बिंदु पर $\overrightarrow{\mathrm{CX}}$ की रचना करो, जैसे कि $\mathrm{m} \angle \mathrm{BCX}=150^{\circ}$ हो ।
(iii) C को वेन्द्र्र करवे 5 से.मी. त्रिज्या का एक चाप खींचो और वह $\overrightarrow{\mathrm{CX}}$ को ' D ' बिंदु पर प्रतिच्छेद करे ।
(iv) B बिंदु पर $\overrightarrow{\mathrm{BY}}$ की रचना करो, जैसे कि $\mathrm{m} \angle \mathrm{CBY}=45^{\circ}$ हो ।
(v) B को वेनन्द्र करके 4.5 त्रिज्या लेकर एक चाप खींचो । वह $\overrightarrow{\mathrm{BY}}$ को A बिंदु पर प्रतिच्छेद करे ।
(vi) $\overline{\mathrm{AD}}$ खींचो । अब आवश्यक चतुर्भुज ABCD प्राप्तर हुआ ।

अभ्यास-4(g)

1. ABCD चतुर्भुज की रचना करो, जिसकी $\mathrm{AB}-3.5$ से.मी., $\mathrm{BC}=5.5$ से.मी., $\mathrm{CD}=$ 5 से.मी. और $\mathrm{m} \angle \mathrm{B}=120^{\circ}, \mathrm{m} \angle \mathrm{C}=90^{\circ}$ हो ।
2. PQRS चतुर्भुज की रचना करो, जैसे कि $\mathrm{PQ}=\mathrm{QR}=3$ से.मी., $\mathrm{PS}=5$ से.मी., $\mathrm{m} \angle \mathrm{P}=90^{\circ}, \mathrm{m} \angle \mathrm{Q}=105^{\circ}$ हो ।
3. PQRS चतुर्भुज की रचना करो, जिससे $\mathrm{m} \angle \mathrm{Q}=45^{\circ}, \mathrm{m} \angle \mathrm{R}=90^{\circ}, \mathrm{PQ}=5.5$ से.मी., $\mathrm{QR}=5$ से.मी. और $\mathrm{RS}=4$ से.मी. हो ।
4. ABCD समलंब चतुर्भुज की रचना करो, जैसे कि $\overline{\mathrm{AD}} \| \overline{\mathrm{BC}}, \mathrm{AB}=3.8$ से.मी., $\mathrm{BC}=$ 6 से.मी., $\mathrm{CD}=4$ से.मी., और $\mathrm{m} \angle \mathrm{B}=60^{\circ}$ हो ।

खुद करो !

(i) $\triangle \mathrm{XBC}$ की रचना करो, $\mathrm{XB}=7.6$ से.मी., $\mathrm{XC}=8$ से.मी., और $\mathrm{BC}=6$ से.मी. है ।
(ii) $\overline{\mathrm{XB}}$ और $\overline{\mathrm{XC}}$ वे मध्यबिंदु क्रमशः A और D तय करो ।
(iii) $\overline{\mathrm{AD}}$ खींचो ।
(iv) $\angle \mathrm{XAD}$ और $\angle \mathrm{B}$ को मापों में क्या संबंध है ध्यान से देखो । (v) रचित चतुर्भुज किस प्रकार का चतुर्भुज है ।

4.4 वृत के भीतर सुषम षड़भुज का अन्तर्लेखत:

जिस बहुभुज की भुजाएँ बराबर लंबाई की होती हैं और प्रत्येक कोण की माप बराबर होती है उसे षम बहुभुज कहा जाता है । छह भुजाओं वाली सम बहुभुज को सम षड़भुज (आकृति 4.18(i) कहा जाता है ।

(आवृति-4.18)

याद रखो : एक बहुभुज के सभी शीर्ष बिंदु एक वृत्त के भीतर स्थित हों तो उस वृत्तांतर्लिखित बहुभुज कहा जाता है ।

एक वृत्त में एक सम बहुभुज का अन्तर्लिखित करने वे लिए हमें वृत्त पर छ बिंदु, (मान लो कि) A, B, C, D, E, F - ऐसे स्थानित करना होगा जैसे कि ABCDEF एक सम बहुभुज होगा । रचना प्रणाली : आकृति 4.18 (i) को देखो । मान लो कि वृत्त की त्रिज्या r है ।
(i) वृत्त पर कोई एक बिंदु लेकर इसका नाम ' A ' दो ।
(ii) A को केन्द्र करके r इकाई की त्रिज्या लेकर एक चाप खींचो । यह चाप वृत्त को प्रतिच्छेद करे । उसका नाम ' B ' दो । B को केन्द्र करके पहले की त्रिज्या की माप लेकर एक चाप खींचो । यह वृत्त को जिस बिंदु पर प्रतिच्छेद करता है, उसका नाम C दो । (A के अलावा अन्य बिंदु) इस क्रम से वृत्त पर $\mathrm{D}, \mathrm{E}, \mathrm{F}$ बिंदु चिह्नित करो ।
(iii) $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}, \overline{\mathrm{CD}}, \overline{\mathrm{DE}}, \overline{\mathrm{EF}}, \overline{\mathrm{FA}}$ रेखाखंडों को खींचो । अब ABCDEF आवश्यक वृतान्तर्लिखित सम चतुर्भुज प्राप्त हुआ ।
कुछ जानने की बातें:
(a) F को केन्द्र करके r इकाई की त्रिज्या लेकर एक चाप खींचो । यह वृत्त को दो बिंदुओं पर प्रतिच्छेद कर सकती है। उसमें से एक बिंदु E और दूसरा A है । अतएव षड़भुज की छ भुजाएँ बराबर लंबाई की होती हैं।
(b) आवृति 4.18 (i) में
$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=\mathrm{OD}=\mathrm{OE}=\mathrm{OF}=\mathrm{r}$ (त्रिज्या)।

(आवृति-4.18(ii))

इसी प्रकार $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DE}=\mathrm{EF}=\mathrm{FA}=\mathrm{r}$
(रचना के समय चापों की त्रिज्या r ली गई है ।)
अतएव षड़भुज के शीर्ष बिंदु और वृत्त के केन्द्र ' O ' को संयोग करने वाले रेखाखंड खींचने से हमें वृत्त के अन्तःभाग में 6 समवाहु त्रिभुज मिलेंगे ।

समवाहु त्रिभुज के प्रत्येक कोण की माप 60° है। अर्थात् रचित बहुभुज के प्रत्येक कोण की माप 120° होगी ।
2. वृत्त के भीतर समवाहु त्रिभुज का अन्तर्लेखन रचना प्रणाली :

रचना प्रणाली :

(i) सम षड़भुज की रचना-प्रणाली के प्रथम और द्वितीय चरणों का अनुसरण करके वृत्त पर A, B, C, D, E, F बिंदुओं को क्रम से चिह्नित करो ।

(आवृति-4.19)
(ii) बिंदुओं को एक को छोड़कर दूसरे को (जैसे $\mathrm{A}, \mathrm{C}, \mathrm{E}$) लेकर रेखाखंड खींचो । जैसे $\overline{\mathrm{AC}}, \overline{\mathrm{CE}}, \overline{\mathrm{EA}}$ इस क्षेत्र में $\triangle \mathrm{ACE}$ आवश्यक वृत्तान्तर्लिखित समवाहु त्रिभुज है । (इसका प्रमाण बाद में जानोगे ।) द्रष्टव्य: आकृति 4.19 में हम और भी एक समवाहु त्रिभुज का अन्तर्लेखन कर सकेंगे । वह $\triangle \mathrm{BDF}$ होगा । खुद करो :
(i) एक निश्चित त्रिज्या लेकर वृत्त की रचना करो । इसका केन्द्र ' O ' होगा ।
(ii) केन्द्र ' O ' को शीर्षबिंदु के रूप में लेकर $\angle \mathrm{AOB}$ की रचना करो, इसकी माप 120° होगी ।
(iii) फिर ' O ' को शीषबिंदु के रूप में लेकर $\angle \mathrm{BOC}$ की रचना करो, जिसकी माप 120° हो ।
(iv) वृत्त पर A, B और C बिंदुओं को चिह्नित करो और

(आवृतति-4.20) $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}$ और $\overline{\mathrm{CA}}$ खींचकर त्रिभुज ABC की रचना पूरी करो।
(v) अब त्रिभुज ABC (समवाहु त्रिभुज) वृत्त वेे भीतर अन्तर्लिखित हुआ ।

3. वृत्त के भीतर वर्ग का अन्तर्लेखन :

एक दूसरे के प्रति लंवबत् दो व्यासों की रचना करके वृत्त के भीतर वर्ग की रचना की जाती है । पहले वृत्त की रचना कर चुकने के बाद निम्न प्रणाली का अनुसरण करो :
(i) मान लो वृत्त का केन्द्र ' O ' है । वृत्त पर कोई एक बिंदु ' A ' लेकर $\overrightarrow{\mathrm{AO}}$ खींचो । यह जहाँ वृत्त को प्रतिच्छेद करता है, उस बिंदु का नाम C दो । वृत्त का $\overline{\mathrm{AC}}$ एक व्यास है ।
(ii) $\overrightarrow{\mathrm{OX}}$ की रचना करो, जैसे कि $\angle \mathrm{AOX}$ एक समकोण होगा । $\overrightarrow{\mathrm{OX}}$ और वृत्त के प्रतिच्छेद बिंदु का नाम ' B ' दो ।
(iii) $\overrightarrow{\mathrm{BO}}$ खींचो । यह जिस बिंदु पर वृत्त को प्रतिच्छेद करेगी, उसका नाम D दो । $\overline{\mathrm{BD}}$ वृत्त का दूसरा व्यास है । $\overline{\mathrm{AC}} \perp \overline{\mathrm{BD}}$ हो ।
(iv) $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}, \overline{\mathrm{CD}}$ और $\overline{\mathrm{DA}}$ खींचो । अब ABCD आवश्यक

(आवृतित-4.21) वृत्तान्तर्लिखित वर्ग प्राप्त हुआ ।

अभ्यास- 4(h)

1. 4 से.मी त्रिज्या वाले एक वृत्त के भीतर एक समवाहु त्रिभुज का अन्तर्लेखन करो ।
2. 4 से.मी. त्रिज्या वाले वृत्त में एक वर्ग का अन्तर्लेखन करो ।
3. 10 से.मी. व्यास वाले एक वृत्त के भीतर एक सम षड़भुज का अन्तर्लेखन करो । glogegof

अध्याय 5

5.1 भूमिका (Introduction)

पिछली कक्षाओं में तुम विभिन्न समतलीय आवृततियों का परिमाप और क्षेत्रफगल ज्ञात करने के बारे में वुछछ जान गए हो । इस अध्याय में तुम्हें विभिन्न प्रकार के त्रिभुजों और चतुर्भुजों का परिमाप और क्षेत्रफल ज्ञात होगा । इस अध्याय का यह भी उद्देश्य घन और घनाभ जैसी आवृततियों वे आयतन, पृष्ठीय क्षेत्रफल से तुम्हें परिचित कराना है । त्रिभुज और चतुर्भुजाकार क्षेत्रों का क्षेत्रफल ज्ञात करने के लिए कुछछ क्षेत्रों में उक्त समतलीय क्षेत्र की भुजा की लंबाई और कोण की माप की आवश्यकता पड़ती है । अतएव पहले हम समतलीय आवृतियों वे बारे में चर्चा करेंगे ।

5.2 पिथागोरास वे प्रमेय और इनका प्रयोग

(A) समकोण त्रिभुज :
$\triangle \mathrm{ABC}$ का $\angle \mathrm{B}$ समकोण और $\overline{\mathrm{AC}}$ विकर्ण (hypotenuse) हैं । $\angle \mathrm{B}$ की आसन्न भुजा दोनों $\overline{\mathrm{AB}}$ और $\overline{\mathrm{BC}}$ में से $\overline{\mathrm{BC}}$ को आधार (Base) और $\overline{\mathrm{AB}}$ को लंब (perpendicular) कहा जाता है । लंब की लंबाई को त्रिभुज की ऊँचाई (height) कहा जाता है ।

उक्त भुजाओं वेन अंग्रेजी प्रतिशब्दों के मूल अक्षर p, b और h द्वारा क्रमशः समकोण त्रिभुज की ऊँचाई, आधार की लंबाई और कर्ण की लंबाई सूचित की जाती है । समकोण त्रिभुज की भुजाओं

(आवृति-5.1) के बीच संबंध प्रतिपादित करने वे लिए प्रसिद्ध प्रमेय है -

एक समकोण त्रिभुज के विकर्ण की लंबाई का वर्ग इसके अन्य दो भुजाओं वी लंबाई के वर्ग के योग के बराबर होता है ।

इस प्रमेय को पिथागोरास का प्रमेय कहा जाता है । (इसके प्रमाण के बारे हम अगली कक्षा में जानेंगे ।)

भारतीय गणितज्ञ वौध्यायनने (प्राय : ई.पू. 800) सामान्यत: अनेक उदाहरणों द्वारा समझाया था कि एक आयत के कर्ण पर रचित वर्ग क्षेत्र का क्षेत्रफल इसकी दो युजाओं पर रचित वर्गों के योग के बराबर है ।

ABCD एक आयत है । इसके BD विकर्ण पर रचित वर्ग का

(!3ठा 5.2) क्षेत्रफल इसकी $\overline{\mathrm{AD}}$ और $\overline{\mathrm{AB}}$ पर रचित वर्गों के क्षेत्रफल के योग के बराबर है।

पिथागोरीय त्र्यी (Pythagorean Triple)

समकोण त्रिभुज की भुजाओं में जो संबंध है - $\left(\mathrm{P}^{2}+\mathrm{B}^{2}=\mathrm{H}^{2}\right)$, यह तीन प्रावृत संख्याओं के समुच्चय द्वारा प्रमाणित होता है । इसे पिथागोरीय त्रयी या पिथागोरीय ट्रीयल कहा जाता है ।

उदाहरण-स्वरूप $3^{2}+4^{2}=5^{2}$ उक्ति सत्य है । दूसरे शब्दों में हम कह सकते हैं कि एक त्रिभुज की भुजाओं की लंबाई क्रमशः 3,4 और 5 इकाइयाँ होने से वह एक समकोण त्रिभुज कहलाएगा । दूसरे प्रकार से कहा जा सकता है कि एक त्रिभुज के 3 इकाई और 4 इकाई वाली भुजा द्वय का आसन्न कोण जब समकोण होगा, तब तीसरी भुजा की लंबाई 5 इकाई होगी । यह एक समकोण त्रिभुज को दर्शाता है ।

अत: आकृति 5.1 में $\mathrm{AC}^{2}+\mathrm{BC}^{2}=\mathrm{AB}^{2}$

$$
\begin{align*}
& \mathrm{h}^{2}=\mathrm{P}^{2}+\mathrm{b}^{2} \text { या } \mathrm{h}=\sqrt{\mathrm{P}^{2}+\mathrm{b}^{2}} \tag{1}\\
& \mathrm{P}^{2}=\mathrm{h}^{2}-\mathrm{b}^{2} \text { या } \mathrm{P}=\sqrt{\mathrm{h}^{2}-\mathrm{b}^{2}} \tag{2}\\
& \mathrm{~b}^{2}=\mathrm{h}^{2}-\mathrm{P}^{2} \text { या } \mathrm{b}=\sqrt{\mathrm{h}^{2}-\mathrm{P}^{2}} \tag{3}
\end{align*}
$$

अत: (1), (2) या (3) नियम द्वारा समकोण त्रिभुज की किन्ही दो भुजाओं की लंबाई ज्ञात होने पर तीसरी भुजा की लंबाई ज्ञात की जा सकेगी ।

नीचे दी गई संख्या त्र्यी (Tripple) को याद रखो ।
$(3,4,5),(5,12,13),(7,24,25),(8,15,17),(9,40,41)$ प्रत्येक त्रयी की संख्याएँ एक दूसरे के अभाज्य हैं। इसलिए उपर्युक्त त्रयियों को पिथागोरीय त्र्यी कहा जाता है । पिथागोरीय त्र्यी को जानने वे लिए एक नियम का प्रयोग किया जाता है ।

मान लो m और n दो प्रावृतत संख्याएँ हैं । जहाँ $m>n$ है । त्र्यी की संख्याएँ हैं $-\mathrm{m}^{2}-\mathrm{n}^{2}$, $2 \mathrm{mn}, \mathrm{m}^{2}+\mathrm{n}^{2}$ । दो प्रावृतत संख्याएँ हैं :- 2 और । और $2>1$ है । त्र्यी की संख्याएँ होंगी:- 2^{2} $-1^{1} ; 2 \times 2 \times 1$ और $2^{2}+1^{2}$

अर्थात् त्र्यी है - 3,4 और 5 । उसी प्रकार अन्य दो प्राकृत संख्या लेकर खुद परीक्षण करो ।
a, b और c एक पिथागोरीय-त्र्यी हो तो $(\mathrm{ka}, \mathrm{kb}$ और kc) भी एक पिथागोरीय त्र्यी होगा (जहाँ k , शून्य के अलावा अन्य एक अचर है ।)

मान लो $\mathrm{K}=10$ और पिथागोरीय-त्र्यी $(3,4,5)$ है । तब $(30,40,50)$ भी एक पिथागोरीयत्र्यी होगी । इस त्र्यी की संख्याएँ एक दूसरे वे अभाज्य नहीं हैं । अतएव यह एक अभाज्य त्र्यी नहीं हैं । उसी प्रकार हम अनेक पिथागोरीय-त्र्यी निर्धारित कर सकेंगें ।

वि.द्र.: यदि a, b, और c एक पिथागोरीय-त्र्यी हैं तब $\frac{\mathrm{a}}{\mathrm{k}}, \frac{\mathrm{b}}{\mathrm{k}}, \frac{\mathrm{c}}{\mathrm{k}}$ भी एक त्र्यी होगी ।
दूसरे शब्दों में हम कह सकते हैं- एक त्रिभुज की वृहत्तम भुजा की लंबाई का वर्ग यदि अन्य दो भुजाओं की लंबाई के वर्ग के योग के बराबर है, तो वृहत्तम भुजा के सम्पुख कोण की माप $\mathbf{9 0}{ }^{\circ}$ होगी। अर्थात् त्रिभुज एक समकोण त्रिभुज होगा । यह पिथागोरीय प्रमेय का विपरीत कथन है । उदाहरण स्वरूप 5,12 और 13 इकाई वाला त्रिभुज एक समकोण त्रिभुज होगा और 13 इकाई वाली भुजा का सम्मुख कोण समकोण होगा ।

खुद करो : दस पिथागोरीय-त्र्री ज्ञात करो ।

प्रश्नावली :
उदाहरण-1 एक समकोण त्रिभुज के समकोण की आसत्र भुजाओं की लंबाई क्रमशः 2.5 से.मी. और 6 से.मी. हैं। विकर्ण की लंबाई ज्ञात करो ।

हल : आवृति 5.3 में ABC समकोण त्रिभुज का $\angle \mathrm{B}=$ एक समकोण है ।
मान लो $\mathrm{AB}=2.5$ से.मी. और $\mathrm{BC}=6$ से.मी. है ।

$$
\begin{aligned}
\mathrm{AC}^{2} & =\mathrm{AB}^{2}+\mathrm{BC}^{2} \\
& =2.5^{2}+6^{2}=6.25+36=42.25 \\
\therefore \mathrm{AC} & =\sqrt{42.25}=6.5
\end{aligned}
$$

\therefore आवश्यक विकर्ण की लंबाई 6.5 से.मी. होगी ।

उदाहरण-2: एक त्रिभुज की तीनों भुजाओं की लंबाई क्रमशः 6 से.मी., 4.5 से.मी. और 7.5 से.मी. है । क्या त्रिभुज समकोण त्रिभुज होगा ? यदि आपका उत्तर ‘हाँ’ है तब कौन सी भुजा त्रिभुज का विकर्ण होगा ?

हल : त्रिभुज की तीन भुजाओं की लंबाई दी गई है । 6 से.मी., 4.5 से.मी. और 7.5 से.मी.। जब त्रिभुज समकोण त्रिभुज होगा तब $(6)^{2}+(4.5)^{2}=(7.5)^{2}$ होना चाहिए ।
(पिथागोरास का विपरीत प्रमेय)
अब बायाँ पक्ष $=(6)^{2}+(4.5)^{2}=36+20.25=56.25$
दायाँ पक्ष $(7.5)^{2}=56.25$ है
$\therefore(6)^{2}+(4.5)^{2}=(7.5)^{2}$
$(6)^{2}+(4.5)^{2}=(7.5)^{2}$ शर्त पूरी हो जाने से यह समकोण त्रिभुज होगा ।
समकोण त्रिभुज की वृहत्तम भुजा विकर्ण होता हैं। अतः इसका विकर्ण 7.5 से.मी होगा ।

उदाहरण : 3
चक्रवात में एक सीधा नारियल का पेड़ बीच में से टूट गया । टूटा भाग मूल तने के साथ जुड़ा रहा । पेड़ का अग्रभाग पेड़ की जड़ से 6 मी दूरी पर जमीन को स्पर्श करता है । टूटे हुए भाग की लंबाई, जमीन पर सीधे रहे ठूँठ भाग की अपेक्षा 2 मीटर अधिक है । तब पेड़ की ऊँचाई ज्ञात करो ।

हल : मान लो पेड़ की ऊँचाई AC है ।
यह B बिंदु पर टूट गया । पेड़ का अग्रभाग A जमीन को D बिंदु पर छूता है ।
मान लो $\mathrm{BC}=\mathrm{x}$ मीटर है ।
$\mathrm{AB}=\mathrm{BD}=(\mathrm{x}+2)$ मीटर है ।
BCD समकोण त्रिभुज में $\mathrm{CD}=6$ मी, $\mathrm{BC}=\mathrm{x}$ मीटर
और $\mathrm{BD}=(\mathrm{x}+2)$ मीटर है ।
पिथागोरास के प्रमेय के अनुसार
$\mathrm{BD}^{2}-\mathrm{BC}^{2}=\mathrm{CD}^{2}$
$(\mathrm{X}+2)^{2}-\mathrm{x}^{2}=6^{2}$
$\left.\Rightarrow \mathrm{x}^{2}+4 \mathrm{x}+4-\mathrm{x}^{2}=36 \quad \therefore(\mathrm{a}+\mathrm{b})^{2}=\mathrm{a}^{2}+2 \mathrm{ab}+\mathrm{b}^{2}\right)$
$\Rightarrow 4 \mathrm{x}+4=36 \Rightarrow 4 \mathrm{x}=36-4=32$
$\Rightarrow \mathrm{x}=\frac{32}{4}=8$

(आवृति-5.4)
$\mathrm{x}=8$ मीटर होगा ।
\therefore पेड़ की ऊँचाई $=\mathrm{x}+\mathrm{x}+2=8+8+2=18$ मीटर
वि.द्र: $(\mathrm{x}+2)^{2}=(\mathrm{x}+2)(\mathrm{x}+2)=\mathrm{x}(\mathrm{x}+2)+2(\mathrm{x}+2)$

$$
=x^{2}+2 x+2 x+4
$$

$$
=x^{2}+4 x+4
$$

उदाहरण-4 :
एक तालाब में खिला कमल जल की सतह से 2 डेसी मीटर ऊपर दिखाई पड़ता था । हवा बहने से वह 8 डेसी मीटर दूर सरक कर जल की सतह से मिल गया । तालाब में जल की गहराई ज्ञात करो ।

हल : AB कमल के नाल की पहली स्थिति बताती है इसका AC भाग जल की सतह के ऊपर और BC भाग जल के भीतर है ।

हवा वे बहने से इस की स्थिति AB के बदले BD हो गई । यह D बिंदु पर जल से मिल गया ।
$\therefore \mathrm{AB}=\mathrm{BD}, \mathrm{CD}=8$ डे.मी.
$\mathrm{AC}=2$ डेसी. मी है ।
मान लो जल की गहराई $\mathrm{BC}=x$ डेसी.मी. है ।
$\therefore \mathrm{AB}=\mathrm{BC}+\mathrm{AC}=(x+2)$ डेसी.मी. है ।
$\therefore \mathrm{BD}=\mathrm{x}+2$ डेसी.मी. है।
\therefore कमल का नाल जल की सतह के साथ लंबवत् है ।
$\therefore \mathrm{BCD}$ समकोण त्रिभुज में $\mathrm{BD}^{2}-\mathrm{BC}^{2}=\mathrm{CD}^{2}$

$$
\begin{aligned}
& \Rightarrow(x+2)^{2}-x^{2}=(8)^{2} \\
& \Rightarrow x^{2}+4 x+4-x^{2}=64 \\
& \Rightarrow 4 x+4=64 \\
& \Rightarrow 4 x=60 \Rightarrow x=\frac{60}{4}=15 \text { डे.मी. }
\end{aligned}
$$

\therefore जल की गहराई 15 डेसी. मीटर है ।

(आवृति -5.5)

अभ्यास- 5(a)

1. वु刁छ समकोण त्रिभुज के समकोण की दोनों आसन्न भुजाओं की लंबाई दी गई हैं । पिथागोरीय त्रयी के आधार पर प्रत्येक समकोण त्रिभुज का विकर्ण ज्ञात करो ।
(i) 3 मी और 4 मी
(ii) 5 से.मी. और 12 से.मी. (iii) 7 से.मी. और 24 से.मी.
(iv) 8 मी. और 15 मी. (v) 1.5 से.मी. और 2 से.मी. (vi) 10 से.मी. और 24 से.मी.
2. नीचे समकोण त्रिभुज के क्रमशः विकर्ण और एक भुजा की लंबाई दी गई है । त्रिभुज की तीसरी भुजा की लंबाई ज्ञात करो ।
(i) 2.5 से.मी. और 2.4 से.मी.
(ii) 4.1 मी. और 4 मीटर
(iii) 12.5 मी. और
10 मी (iv) 125 मी और 100 मी.
(v) 299 मी और 276 मी.
3. नीचे कुछ त्रिभुजों की भुजाओं की लंबाई दी गई है प्रमाणित कीजिए कि प्रत्येक एक-एक समकोण त्रिभुज हैं ।
(i) 11 से.मी., 60 से.मी. और 61 से.मी.
(ii) 0.8 से.मी., 1.5 मी और 1.7 मी.
(iii) 0.9 डेसी.मी., 4 डेसी.मी. और 4.1 डेसी. मीटर
(iv) 0.7 से.मी., 2.4 से.मी. और 2.5 से.मी.
4. ABC त्रिभुज की तीनों भुजाओं की लंबाई दी गई है । पहले परीक्षण करवे देखो कि ABC एक समकोण त्रिभुज है या नहीं ? यदि उत्तर हाँ है तब बताओ त्रिभुज के किस कोण की माप 90° होगी ?
(i) $\mathrm{AB}=3$ से.मी., $\mathrm{BC}=4$ से.मी. और $\mathrm{CA}=5$ से.मी.
(ii) $\mathrm{CA}=5$ से.मी., $\mathrm{AB}=12$ से.मी. और $\mathrm{BC}=13$ से.मी.
(iii) $\mathrm{BC}=7$ से.मी., $\mathrm{CA}=24$ से.मी. और $\mathrm{AB}=25$ से.मी.
(iv) $\mathrm{BC}=9$ से.मी., $\mathrm{AB}=40$ से.मी. और $\mathrm{AC}=41$ से.मी.
(v) $\mathrm{AB}=8$ से.मी., $\mathrm{BC}=15$ से.मी. और $\mathrm{CA}=17$ से.मी.
5. एक आदमी A जगह से निकलकर पूर्व की दिशा में 50 मीटर जाने के बाद वहीं से उत्तर की दिशा में 120 मीटर जाकर ' B ' जगह पर पहुँचा । A और B के बीच दूरी ज्ञात करो ।
6. 20 मी ऊँचा ताड़ का पेड़ चक्रवात में झुक कर उसका अग्रभाग उस पेड़ की जड़ से 12 मीटर दूरी पर स्थित एक स्तंभ वे $\begin{gathered}\text { अग्रभाग को स्पर्श करता है । स्तंभ की ऊँचाई ज्ञात करो । }\end{gathered}$
7. एक मकान की बाहरी दीवार से 8 मीटर दूरी पर एक सीढ़ी दीवार को सटाकर रखने से सीढ़ी का अग्रभाग दीवार के ऊपरी भाग को स्पर्श करता है । सीढ़ी की लंबाई 10 मी. है । दीवार की ऊँचाई ज्ञात करो ।
8. एक मकान की दो सम्मुख दीवारों की ऊँचाई क्रमश 25 डेसी.मी और 64 डेसी.मी. है । दोनों दीवारों वे अग्रभाग को जोड़ने वाली एक सीधी कड़ी की लंबाई 65 डेसी मी. है । मकान की चौड़ाई ज्ञात करो ।
9. एक तालाव में एक कमल की कली का अग्रभाग जल की सतह से 1 मीटर ऊपर दिखाई पड़ती थी । हवा से धीरे धीरे कली सरक्कर 3 मीटर की दूरी पर जल की सतह से मिल गई । तालाब के जल की गहराई ज्ञात करो ।
10. एक समकोण त्रिभुज की एक भुजा की लंबाई 32 से.मी. है । इसके विकर्ण की लंबाई अन्य भुजा की लंबाई की अपेक्षा 8 से.मी. वृहत्तर है । विकर्ण की लंबाई ज्ञात करो ।
(B) समद्विवाहु त्रिभुज :

एक त्रिभुज की दो भुजाओं की लंबाई एक दूसरे वे बराबर होने पर उस त्रिभुज को समद्विवाहु त्रिभुज कहा जाता है । एक समद्विवाहु त्रिभुज के समान लंबाई वाली दोनों भुजाओं का आसत्र कोण एक समकोण होने पर वह त्रिभुज समकोण समद्विवाहु त्रिभुज कहलाता है ।

समकोण समद्विवाहु त्रिभुज का विकर्ण:
$\triangle \mathrm{ABC}$ एक समकोण समद्विवाहु त्रिभुज है ।
मान लो $\mathrm{AB}=\mathrm{BC}=\mathrm{a}$ इकाई $\mathrm{AC}=\mathrm{h}$ इकाई
$\therefore \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$ तब $\mathrm{h}^{2}=\mathrm{a}^{2}+\mathrm{a}^{2}=2 \mathrm{a}^{2}$ होगा
$\Rightarrow \mathrm{h}=\sqrt{2} \mathrm{a} \Rightarrow \mathrm{a}=\frac{\mathrm{h}}{\sqrt{2}}$ इकाई

विकर्ण की लंबाई $(\mathrm{h})=$ भुजा की लंबाई $\times \sqrt{2}$, अथार्ट् भुजा की लंबाई= विकर्ण की लंबाई
समकोण समद्विवाहु त्रिभुज का परिमाप $=\mathrm{AB}+\mathrm{BC}+\mathrm{CA}$

$$
\begin{aligned}
& =a+a+\sqrt{2} a \\
& =2 a+\sqrt{2} a=\sqrt{2} a(\sqrt{2}+1) \text { इकाई }
\end{aligned}
$$

समकोण समद्विवाहु त्रिभुज का परिमाप $=\sqrt{2} \times$ बराबर भुजा की लंबाई $(\sqrt{2}+1)$

खुद करो : अपनी कॉपी में तीन समकोण समद्विवाहु त्रिभुजों की रचना करो, जिनकी बराबर भुजाओं की लंबाई क्रमशः 3 से.मी., 4 से.मी. और 5 से.मी. हो । प्रत्येक क्षेत्र में विकर्ण की लंबाई मापकर $\sqrt{2}$ का आसत्र मान दशमलव एक स्थान तक निरूपित करो ।

समद्विवाहु त्रिभुज की ऊँचाई

समद्विवाहु त्रिभुज की बराबर लंबाई वाली दो भुजाओं से भिन्न अन्य भुजा को साधारण तथा इनका आधार माना जाता है । यह तुम्हें पहले से ज्ञात है । अब परीक्षण करके समद्विवाहु त्रिभुज के आधार के सम्मुख शीषाबिंदु से आधार के प्रति रचित लंब संबंधी एक तथ्य के बारे में जानेंगे ।

भिन्न भिन्न माप लेकर तीन समद्विवाहु त्रिभुजों की रचना करो । 5.7 आवृति में जैसे दर्शाया गया है उसी प्रकार तीन त्रिभुजों की रचना करो । उनका अनुरूप नामकरण करो । प्रत्येक त्रिभुज के A बिंदु से $\overline{\mathrm{BC}}$ के प्रति $\overline{\mathrm{AD}}$ लंब की रचना करो ।

(आवृति 5.7) तीनों आवृतियों को (i), (ii) और (iii) द्वारा दर्शाओ ।

प्रत्येक स्थिति में बराबर भुजाएँ $\overline{\mathrm{AB}}$ और $\overline{\mathrm{AC}}$ के रूप में नामित हुए हैं। प्रत्येक त्रिभुज से BD और DC की लंबाई ज्ञात करके निम्न सारणी में लिखो ।

आवृति नं	BD	DC
(i)		
(ii)		
(iii)		

सारणी - 5.1
इस सारणी से हम देखेंगे कि प्रत्येक आकृति में $\mathrm{BD}=\mathrm{DC}$ हैं । अर्थात् एक समद्विवाहु त्रिभुज के आधार के सम्मुख शीर्ष बिंदु से आधार के प्रति रचित लंब आधार को समद्विभाजित करता है ।

उपनिष्कर्ष: एक समवाहु त्रिभुज के प्रत्येक शीर्ष बिंदु से इसकी सम्मुख भुजा के प्रति रचित लंब उस भुजा को समद्विखंडित करता है ।
समद्विवाहु त्रिभुज की ऊँचाई, आधार और बराबर भुजाओं में संबध: ABC एक समद्विवाहु त्रिभुज है। (आकृति 5.8 देखो)
$\mathrm{AB}=\mathrm{AC}$ और $\overline{\mathrm{BC}}$ के प्रति $\overline{\mathrm{AD}}$ रचित लंब $=\mathrm{AD}$ है ।
$\triangle \mathrm{ABC}$ का आधार $\overline{\mathrm{BC}}$ और ऊँचाई $\overline{\mathrm{AD}}$ है ।

(आवृतृत-5.8)
$\mathrm{AB}=\mathrm{AC}=\mathrm{a}$ इकाई हो । $\mathrm{BC}=\mathrm{b}$ इकाई हो । परिणामस्वरूप BD
$=\mathrm{DC}=\frac{1}{2} \mathrm{~b}$ इकाई और $\triangle \mathrm{ADC}$ एक समकोण त्रिभुज है । $\therefore \mathrm{AD}^{2}=\mathrm{AC}^{2}-\mathrm{DC}^{2}$ होगा।
$=\mathrm{a}^{2}-\left(\frac{1}{2} \mathrm{~b}\right)^{2}=\mathrm{a}^{2}-\frac{1}{4} \mathrm{~b}^{2} \quad \therefore \mathrm{AD}=\sqrt{\mathrm{a}^{2}-\frac{1}{4}} \mathrm{~b}^{2}$ इकाई होगी ।
समद्विवाहु त्रिभुज की उँचाई $=\sqrt{(\text { (बराबर भुजा की लंबाई })^{2}-(\text { अर्द्ध आधार की लंबाई })^{2}}$
$=\sqrt{(\text { बराबर भुजा की लंबाई })^{2}-\frac{1}{4}(\text { आधार की लंबाई })^{2}}$
टिप्पणी: जब $\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=\mathrm{a}$ इकाई हो तब त्रिभुज समबाहु त्रिभुज होगा । इस स्थिति में $\mathrm{b}=\mathrm{a}$ होगी । $\mathrm{AD}=\sqrt{a^{2}-\frac{1}{4} a^{2}}=\sqrt{\frac{3 a^{2}}{4}}=\frac{\sqrt{3} \times a}{2}$ होगी । अर्थात् समवाहु त्रिभुज की ऊँचाई $=\frac{\sqrt{3}}{2} \times$ प्रत्येकभुजा की लंबाई खुद करो :
(i) $\triangle \mathrm{ABC}$ में $\mathrm{AB}=\mathrm{AC}=5$ से.मी. और $\mathrm{BC}=8$ से.मी. तब AD ऊँचाई कितनी होगी ?
(ii) $\triangle \mathrm{ABC}$ में $\mathrm{AC}=\mathrm{AB}=\mathrm{BC}=4$ से.मी. है। त्रिभुज की ऊँचाई AD कितनी होगी ?
(iii) $\triangle \mathrm{ABC}$ में $\mathrm{AB}=\mathrm{AC}=10$ से.मी. और $\overline{\mathrm{AD}} \perp \overline{\mathrm{BC}}$ और $\mathrm{AD}=8$ से.मी. है। BC की लंबाई ज्ञात करो ।
(iv) $\triangle \mathrm{ABC}$ में $\mathrm{AB}=\mathrm{AC}=\mathrm{a}$ से.मी. है त्रिभुज की ऊँचाई h से.मी. है । BC की लंबाई ज्ञात करो ?
(c) आयत और वर्ग के कर्ण

(आवृति-5.9(i))

(आवृति-5.9(ii))

तुम जानते हो, जिस चतुर्भुज की सम्मुख भुजाएँ बराबर हों, प्रत्येक कोण समवोेण हो, वह आयत कहलाता है । जिस आयत की भुजाएँ बराबर हों, वह वर्ग कहलाता है ।

ABCD आयत में (आवृति 5.9 (i) विकर्ण $\overline{\mathrm{BD}}$ की रचना करो । $\mathrm{AD}=\mathrm{BC}=l$ इकाई है । $\mathrm{AB}=\mathrm{CD}=\mathrm{b}$ इकाई हो । $\mathrm{BD}=\mathrm{h}$ इकाई हो ।
BCD समकोण त्रिभुज में $\mathrm{BD}^{2}=\mathrm{BC}^{2}+\mathrm{DC}^{2}$ या $\mathrm{h}^{2}=\mathrm{l}^{2}+\mathrm{b}^{2}$
$\therefore \mathrm{h}=\sqrt{1^{2}+\mathrm{b}^{2}}$ अर्थात् आयत का विकर्ण $=\sqrt{(\text { लंबाई })^{2}+(\text { चौडाई })^{2}}$
$\mathrm{l}=\mathrm{b}$ हो तो ABCD एक वर्ग होगा। (आवृति-5.9(ii))
इस स्थिति में $\mathrm{h}=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}=\mathrm{a} \sqrt{2}$ अथार्त् वर्ग का विकर्ण $=\sqrt{2} \times$ भुजा की लंबाई । प्रश्नावली :
उदाहरण-5: एक समकोण समद्विवाहु त्रिभुज के विकर्ण की लंबाई 20 से.मी. है । इसके प्रत्येक बराबर भुजा की लंबाई ज्ञात करो ।
हल : समकोण समद्विवाहु त्रिभुज की प्रत्येक बराबर भुजा की लंबाई $=$

$$
\begin{aligned}
& =\frac{\text { विकर्ण की लंबाई }}{\sqrt{2}}=\frac{20}{\sqrt{2}} \text { से.मी. } \\
& =\frac{20 \sqrt{2}}{\sqrt{2} \times \sqrt{2}} \text { से.मी. (दोनों अंश और हर को } \sqrt{2} \text { से गुणा किया गया है) } \\
& =\frac{20 \sqrt{2}}{2}=10 \sqrt{2} \text { से.मी. (उत्तर) }
\end{aligned}
$$

उदाहरण-6

एक समकोण समद्विवाहु त्रिभुज के विकर्ण की लंबाई का वर्ग 200 व.मी. है। इसकी प्रत्येक बराबर भुजा की लंबाई ज्ञात करो और इसका परिमाप भी ज्ञात करो ।

हल : विकर्ण की लंबाई का वर्ग $=200$ व.मी.
\therefore विकर्ण की लंबाई $=\sqrt{200}$ मी $=\sqrt{2 \times 100}=10 \sqrt{2}$ मी.
\therefore बराबर भुजा की लंबाई $=\frac{\text { विकर्ण की लंबाई }}{\sqrt{2}}=\frac{10 \sqrt{2}}{\sqrt{2}}$ मी. $=10$ मी.
परिमाप $=\sqrt{2} \times$ समान भुजा की लंबाई $(\sqrt{2}+1)=\sqrt{2} \times 10(\sqrt{2}+1)$ $=(20+10 \sqrt{2})$ (उत्तर)
उदाहरण-7:
एक वर्ग के दो सम्मुख कौणिक बिंदुओं में दूरी 40 से.मी. है । इसका परिमाप ज्ञात करो । हल : दो सम्मुख कौणिक बिंदुओं मे दूरी $=40$ से.मी.
अर्थात् विकर्ण की लंबाई $=40$ से.मी.
\therefore वर्ग की भुजा की लंबाई $=\frac{40 \text { से.मी. }}{\sqrt{2}}=\frac{40 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}}=$ से.मी.

$$
=\frac{40 \sqrt{2}}{2}=20 \sqrt{2} \text { से.मी. }
$$

\therefore वर्ग का परिमाप $=4 \times$ भुजा की लंबाई $=4 \times 20 \sqrt{2}$ से.मी $=80 \sqrt{2}$ से.मी (उत्तर)

उदाहरण-8: एक आयत की आसत्र भुजाओं की लंबाई 120 से.मी. हैं और 27 से.मी. हैं । इसके विकर्ण की लंबाई ज्ञात करो ।

हल : आसन्न भुजाओं की लंबाई क्रमशः 120 से.मी. और 27 से.मी. हैं ।
\therefore इसके विकर्ण की लंबाई $=\sqrt{120^{2}+27^{2}}=\sqrt{3^{2}\left(40^{2}+9^{2}\right)}$

$$
=\sqrt{\left(3^{2} \times 41\right)^{2}} \text { से.मी. }
$$

($9,40,41$ एक पिथागोरीय त्रयी हैं ।
$=3 \times 41$ से.मी. $=123$ से.मी. (उत्तर)
उदाहरण-9:
24 से.मी. भुजावाले समवाहु त्रिभुज की ऊँचाई ज्ञात करो ।
हल : समवाहु त्रिभुज की ऊँचाई = प्रत्येक भुजा की लंबाई $\times \frac{\sqrt{3}}{2}$

$$
=24 \times \frac{\sqrt{3}}{2} \text { से.मी. }=12 \sqrt{3} \text { से.मी. (उत्तर) }
$$

उदाहरण-10 : एक समद्विवाहु त्रिभुज का आधार 36 से.मी. हैं। बराबर भुजाओं की लंबाई 82 से.मी. है । ऊँचाई ज्ञात करो ।

हल : $\triangle \mathrm{ABC}$ में $\mathrm{AB}=\mathrm{AC}=82$ से. मी.

$$
\mathrm{BC}=36 \text { से.मी. }
$$

$\overline{\mathrm{AD}}, \overline{\mathrm{BC}}$ के प्रति लंब है ।
$\therefore \mathrm{BD}=\frac{\mathrm{BC}}{2}=\frac{36}{2}$ से.मी. $=18$ से.मी.
ADB समकोण त्रिभुज में

$$
\begin{aligned}
& \mathrm{AD}=\sqrt{\mathrm{AB}^{2}-\mathrm{BD}^{2}}=\sqrt{82^{2}-18^{2}} \text { से.मी. } \\
& =\sqrt{(82+18)(82-18)} \text { से.मी. }=\sqrt{100 \times 64} \text { से.मी. } \\
& =10 \times 8=80 \text { से.मी. }
\end{aligned}
$$

(आवृति-5.10)
\therefore आवश्यक ऊँचाई $=80$ से.मी. होगी ।
उदाहरण-11: एक समवाहु त्रिभुज की ऊँचाई $30 \sqrt{3}$ से.मी. है । त्रिभुज का परिमाप ज्ञात करो ।
हलः समवाहु त्रिभुज की ऊँचाई $=\frac{\sqrt{3}}{2} \times$ भुजा की लंबाई
\Rightarrow भुजा की लंबाई $=$ ऊँचाई $\times \frac{2}{\sqrt{3}}=30 \sqrt{3} \times \frac{2}{\sqrt{3}}=60$ से.मी.
\therefore समवाहु त्रिभुज का परिमाप $=3 \times$ भुजा की लंबाई $=(3 \times 60)$ से.मी. $=180$ से.मी.

अभ्यास-5(b)

1. समद्विवाहु त्रिभुज में

(i) आधार की लंबाई 10 से.मी. और प्रत्येक बराबर भुजा की लंबाई 13 से.मी. है तो इसकी ऊँचाई ज्ञात करो ।
(ii) प्रत्येक बराबरभुजा की लंबाई 4 से.मी. है । ऊँचाई ज्ञात करो ।
(iii) आधार की लंबाई 14 से.मी. है । ऊँचाई 24 से.मी. है । प्रत्येक बराबर भुजा की लंबाई ज्ञात करो ।
(iv) ऊँचाई 12 से.मी. है । आधार की लंबाई ऊँचाई से 2 से.मी. कम है । प्रत्येक बराबर भुजा की लंबाई ज्ञात करो ।
2. ABC समकोण त्रिभुज में $\mathrm{m} \angle \mathrm{B}=90^{\circ}$ और $\mathrm{AB}=\mathrm{BC}$ है ।
(i) $\overline{\mathrm{AB}}=8$ से.मी. है विकर्ण $\overline{\mathrm{AC}}$ की लंबाई लंबाई ज्ञात करो ।
(ii) $\overline{\mathrm{AB}}=7$ से.मी. है $\overline{\mathrm{AC}}$ विकर्ण की लंबाई ज्ञात करो ।
(iii) विकर्ण $\overline{\mathrm{AC}}$ की लंबाई 40 से.मी. है $\overline{\mathrm{BC}}$ की लंबाई ज्ञात करो ।
(iv) विकर्ण $\overline{\mathrm{AC}}$ की लंबाई 25 से.मी. है । $\overline{\mathrm{AB}}$ की लंबाई ज्ञात करो ।
3. (i) एक वर्ग की भुजा की लंबाई 7 से.मी. है । इसके विकर्ण की लंबाई ज्ञात करो ।
(ii) एक वर्ग वे विकर्ण की लंबाई 18 से.मी. है । इसकी भुजा की लंबाई ज्ञात करो ।
(iii) एक वर्ग के विकर्ण की लंबाई $22 \sqrt{2}$ से.मी. है । इसका परिमाप ज्ञात करो ।
(iv) एक वर्ग की भुजा की लंबाई 2 से.मी. बढ़ जाने से इसका विकर्ण कितने से.मी. बढ़ जाएगा ?
4. एक आयत के समकोण की आसन्न भुजाओं की लंबाई नीचे दी गई हैं, विकर्ण की लंबाई ज्ञात करो ।
(i) 75 मी और 40 मी.
(ii) 14 मी. और 48 मी.
5. एक समवाहु त्रिभुज का परिमाप 24 से.मी है । इसकी ऊँचाई ज्ञात करो ।
6. एक समवाहु त्रिभुज के एक शीर्ष बिंदु से सम्मुख भुजा वे मध्यबिंदु की दूरी $15 \sqrt{3}$ डेसी.मीटर है । इसका परिमाप ज्ञात करो ।
7. एक समद्विवाहु त्रिभुज की प्रत्येक बराबर भुजा 51 से.मी. है । तीसरी भुजा पर रचित ऊँचाई की लंबाई 45 से.मी. है इसकी भुजा की लंबाई ज्ञात करो ।
8. एक समवाहु त्रिभुज वे आधार की लंबाई 96 से.मी. है । ऊँचाई 14 से.मी. है । इसकी प्रत्येक बराबर बाहु की लंबाई और परिमाप ज्ञात करो ।
9. एक समकोण समद्विवाहु त्रिभुज का परिमाप $8(\sqrt{2}+1)$ मीटर है । इसकी प्रत्येक बराबर भुजा की लंबाई ज्ञात करो ।
10. एक वर्ग की भुजा की लंबाई 5 से.मी.बढ़ जाने से इसवे परिमाप में कितनी वृद्धि होगी ? इसके विकर्ण की लंबाई में कितनी वृद्धि होगी ?

5.2 क्षेत्र और क्षेत्रफल (Region and Area) :

त्रिभुजाकार विशिष्ट क्षेत्र

एक त्रिभुज और इसके अन्त:भाग के संयोग से त्रिभुजाकार विशिष्ट क्षेत्र (Triangular region) बनता है । (आवृति-5.11(i))

चतुर्भुजाकार विशिष्ट क्षेत्र : एक चतुर्भुज के अन्त:भाग के साथ इसकी चारों भुजाओं के संयोग से चतुर्भुजाकार विशिष्ट क्षेत्र बनता है । (आवृति 5.11 (ii))

(आवृति 5.11(i))

(आकृति 5.11(ii))

त्रिभुजाकार और चतुर्भुजाकार क्षेत्र के बारे में द्वितीय और तृतीय अध्याय में चर्चा की गई है । उसी प्रकार पंचभुजाकार और षड़भुजाकार क्षेत्र की अवधारणा दी जा सकती है। त्रिभुजाकार विशिष्ट क्षेत्र के क्षेत्रफल को संक्षेप में त्रिभुज का क्षेत्रफल कहा जाता है। उसी प्रकार चतुर्भुज का क्षेत्रफल, पंचभुज का क्षेत्रफल आदि कहा जाएगा।

क्षेत्र (region) की माप को क्षेत्रफल (area) कहा जाता है ।

क्षेत्रफल संबंधी निष्कर्ष

निष्कर्ष-1 : प्रत्येक बहुभुज द्वारा बंद क्षेत्र (closed region) का एक निश्चित क्षेत्रफल होता है । यह एक धनात्मक प्राकृत संख्या होती है ।

निष्कर्ष-2 : एक बहुभुज द्वारा बंद क्षेत्र का क्षेत्रफल इसे बनाने वाले त्रिभुजाकार विशिष्ट क्षेत्रों के क्षेत्रफलों का योगफल के बराबर है।

5.2.1 क्षेत्रफल की माप (क्षेत्रफल के नियम का क्रमविकास)

(i) क्षेत्र को मापने के लिए प्रथम चरण है माप की इकाई का निर्द्धारण करना। जिस वर्ग की प्रत्येक भुजा की लंबाई एक इकाई है, उसके क्षेत्रफल को एक वर्ग इकाई वे रूप में स्वीकार किया जाता है जैसे- 1 से.मी. लंबी भुजाओं वाले वर्ग का क्षेत्रफल 1 वर्ग से.मी. होगा । उसी प्रकार 1 मी. लंबी भुजाओं वाले वर्ग का क्षेत्रफल 1 वर्ग मी. होगा ।
(ii) एक आयत के भीतर 1 इकाई अंतर में इस की भुजाओं से समांतर रेखाएँ खींचकर इसे कई इकाई वे वर्गों में बाँटा जा सकता है । इन छोटे छोटे वर्गों को गिनने से जो संख्या मिलती है, आयत की लंबाई और चौड़ाई वे गुणफल से वही संख्या मिलती है । जैसे: 5 से.मी. लंबाई और 4 से.मी. चौड़ाई वाले आयत में 1 से.मी. अंतर में इसकी भुजाओं से समांतर करवे सरलरेखा खींचने से आयत 20 ,

5 से.मी.

(आवृति-5.12) 1 से.मी. लंबी भुजावाले वर्ग में बँट गया है ।

आवृति 5.12 में लंबाई और चौड़ाई से संबंधित संख्या 5 और 4 से संख्या 20 मिली । ऐसे अध्ययन से हमें ज्ञात होता है कि आयत का क्षेत्रफल इस की लंबाई और चौड़ाई का गुणनफल है । अर्थात् 20 वर्ग से.मी. $=5$ से.मी. $\times 4$ से.मी. है ।

सामान्यतया एक आयत की लंबाई l इकाई और चौड़ाई b इकाई होने से, आयत का क्षेत्रफल $=(1 \times b)$ वर्ग इकाई होगा ।
वर्ग की भुजा a इकाई होने से वर्ग का क्षेत्रफल $=a^{2}$ वर्ग इकाई होगा ।
(iii) तर्व द्वारा प्रमाणित किया जा सकता है कि A आयत का विकर्ण आयत को बराबर क्षेत्रफल वाले दो समकोण त्रिभुजों में बाँट देता है ।

अतएव ABC समकोण त्रिभुज का क्षेत्रफल
$=\frac{1}{2} \times \mathrm{ABCD}$ आयत का क्षेत्रफल

$=\frac{1}{2} \times$ लंबाई \times चौड़ाई $=\frac{1}{2} \times \mathrm{BC} \times \mathrm{AB}$
अर्थात् समकोण त्रिभुज का क्षेत्रफल $=\frac{1}{2} \times$ समकोण की आसन्न दोनों भुजाओं की लंबाई का गुणनफल

प्रश्नावली

उदाहरण-1: एक वर्ग का क्षेत्रफल 948.64 वर्ग डेका मीटर है । इसके चारों तरफ बाड़ लगाने वे लिए मीटर 40 रुपए के हिसाब से कितना खर्च होगा ?

हल : वर्ग का क्षेत्रफल $=948.64$ वर्ग डेका मीटर

$$
=948.64 \times 100 \text { व.मी. }=94864 \text { व.मी. }
$$

\therefore वर्ग की भुजा की लंबाई $=\sqrt{94864}$ मीटर $=308$ मीटर
\therefore वर्गक्षेत्र का परिमाप $=4 \times 308=1232$ मीटर
एक मीटर बाड़ लगाने का खर्च $=40$ रुपए
1232 मीटर को बाड़ लगाने का खर्च $=(40 \times 1232)$ रुपए $=49280$ रुपए (उत्तर)
उदाहरण-2 : एक आयत की लंबाई, इसकी चौडाई की तीन गुनी है । इसका क्षेत्रफल 711.48 वर्ग मीटर है। इसकी लंबाई से.मी. में ज्ञात करो ।

हल : 711.48 व.मी. $=711.48 \times 10000$ व.से.मी. $=7114800$ व.से.मी.
(1 व.मी. $=10000$ व.से.मी. है ।)
मान लो आयत की चौड़ाई $=x$ से.मी. है ।
\therefore लंबाई $=3 x$ से.मी. होगी ।
\therefore आयत का क्षेत्रफल $=$ लंबाई \times चौड़ाई $=(3 a \times a)$ व.से.मी. है।

$$
=3 \mathrm{a}^{2} \text { व.से.मी. }
$$

प्रश्न के अनुसार $3 a^{2}=7114800$
$\Rightarrow \mathrm{a}^{2}=\frac{7114800}{3}=2371600 \Rightarrow \mathrm{a}=\sqrt{2371600}=1540$ से.मी.
\therefore आयत की चौड़ाई $=1540$ से.मी. है ।
लंबाई $=3 \times 1540$ से.मी. $=4620$ से.मी. है (उत्तर)

उदाहरण-3 :

65 मी. लंबाई वाले एक वर्गाकार बगीचे वे परिमाप को सटकर भीतर की तरफ 2.5 मी. चौड़ा एक रास्ता बनाया गया । 5 रुपए प्रति वर्ग मीटर की दर से रास्ता बनाने में कितना खर्च होगा । हल: ABCD वर्गाकार बगीचा है । इसकी भीतरी सीमा से सटकर बना रास्ता छायांकित है । EFGH एक वर्ग है ।
EFGH वर्ग की भुजाओं की लंबाई $=65-2 \times 2.5$ मी.

$$
=(65-5) \text { मी }=60 \text { मी. }
$$

\therefore रास्ते का क्षेत्रफल

$$
\begin{aligned}
& =\mathrm{ABCD} \text { वर्ग का क्षेत्रफल }-\mathrm{EFGH} \text { वर्ग का क्षेत्रफल } \\
& =(65 \times 65-60 \times 60) \text { व.मी. }=(4225-3600) \text { व.मी. } \\
& =625 \text { व.मी. }
\end{aligned}
$$

(आवृति-5.14)

1 वर्ग मीटर रास्ता बनाने का खर्च $=5.00$ रुपए
625 वर्ग मीटर रास्ता बताने का खर्च $=625 \times 5=3125$ रुपए (उत्तर)

1. एक वर्ग का क्षेत्रफल 900 वर्ग मीटर है । इसका परिमाप ज्ञात करो ।
2. एक आयताकार घास के मैदान की लंबाई इसकी चौड़ाई की दुगुनी है । इसका क्षेत्रफल 800 वर्ग मीटर है । इसकी लंबाई और चौड़ाई ज्ञात करो ।
3. एक वर्ग का क्षेत्रफल 139876 वर्ग मीटर है । इसके चारों तरफ बाड़ लगाने के लिए रु. 15.00 प्रति मीटर की दर से कितना खर्च होगा ?
4. एक वर्गाकार बगीचे की लंबाई 30 मीटर है । उसकी भीतरी सीमा में चारों तरफ को सटकर 1 मीटर चौड़ा रास्ता बनाया गया है ।
(i) रास्ते का क्षेत्रफल ज्ञात करो ।
(ii) रास्ता बनाने के लिए वर्ग मीटर को रु 2.40 की दर से कितना खर्च होगा ?
5. 5 मी. $\times 3$ मी. की माप वे फर्श पर टाइल बिछाने वे लिए 60 से.मी. $\times 50$ से.मी. की माप की कितनी टाइलें आवश्यक हैं, ज्ञात करो ।
6. राम ने एक जमीन 20 मी $\times 24$ मी. वे आकार की खरीदी है । श्याम ने जो जमीन खरीदी है, उसका आकार 22 मी. $\times 22$ मी. है । दोनों जमीन वे
(i) परिमाप का अंतर ज्ञात करो ।
(ii) क्षेत्रफल का अंतर ज्ञात करो ।
7. एक आयताकार क्षेत्र की लंबाई 125 मीटर है । चौड़ाई 60 मी. है. । इसवेन भीतरी ओर लंबाई के एक किनारे को और चौड़ाई के दोनो किनारों को कुल तीन किनारों को सटकर 2 मी. चौड़ा रास्ता है। रास्ते का क्षेत्रफल ज्ञात करो ।
8. एक आयताकार मैदान के बीच में 2 मीटर चौड़े दो रास्ते एक दूसरे को समकोण में प्रतिच्छेद करते हैं । प्रत्येक रास्ता आयताकार मैदान की एक भुजा से समांतर है । आयताकार मैदान की एक भुजा से समांतर है । आयताकार मैदान की लंबाई 72 मी. और चौड़ाई 48 मी. है । रास्ते का क्षेत्रफल ज्ञात करो ।

5.3 त्रिभुज का क्षेत्रफल :

(A) किसी भी त्रिभुज का क्षेत्रफल ज्ञात करने वे लिए समकोण त्रिभुज का क्षेत्रफल ज्ञात करने का सूत्र " $\frac{1}{2} \times$ समकोण की आसत्र दोनों भुजाओं का गुणनफल" और निष्कर्ष -2 का व्यवहार किया जा सवेतगा । बगल में दिए गए ABC त्रिभुज का क्षेत्रफल जानने के लिए $\overline{\mathrm{AD}}$ लंब $\overline{\mathrm{BC}}$ आधार पर खींचा गया है । परिणाम स्वरूप यह ADB और ADC दो समकोण त्रिभुजों में बँट गया है ।

ABC त्रिभुज का क्षेत्रफल $=\triangle \mathrm{ABD}$ का क्षेत्रफल $+\triangle \mathrm{ADC}$ का क्षेत्रफल

$$
\begin{aligned}
& =\frac{1}{2} \times \mathrm{BD} \times \mathrm{AD}+\frac{1}{2} \times \mathrm{DC} \times \mathrm{AD} \\
& =\frac{1}{2} \times(\mathrm{BD}+\mathrm{DC}) \times \mathrm{AD}=\frac{1}{2} \times \mathrm{BC} \times \mathrm{AD} \\
& =\frac{1}{2} \times \text { आधार की लंबाई } \times \text { ऊँचाई }
\end{aligned}
$$

त्रिभुज का क्षेत्रफल $=\frac{1}{2} \times$ आधार की लंबाई \times ऊँचाई
\therefore आधार की लंबाई $=\frac{2 \times \text { क्षेत्रफल }}{\text { ऊँचाई }}$ और ऊँचाई $=\frac{2 \times \text { क्षेत्रफल }}{\text { आधार की लंबाई }}$

तुम्हारे लिए गति-विधियाँ

1. एक वर्ग कागज या ग्राफ कागज पर एक त्रिभुज की रचना करो । (वर्ग कागज वे प्रत्येक छोटे वर्ग का क्षेत्रफल $=1$ वर्ग से.मी. है ।)
2. त्रिभुज वेन अन्त:भाग में जितने वर्ग हैं, उन्हें ज्ञात करो ।
3. त्रिभुज के अन्तःभाग में छोटे वर्ग का आधार या उससे अधिक भाग रहने वाले क्षेत्रों का योग ज्ञात करो ।
4. 2 और 3 चरण में क्षेत्रों की संख्या का योग ज्ञात करो ।
(वि.द्र: आधा भाग रहने वाले दो क्षेत्रों को एक वर्ग इकाई मानो । आधे से अधिक भाग रहने वाले क्षेत्र को एक
 वर्ग इकाई मानो ।)
5. त्रिभुज के आधार की लंबाई कितनी है ? ऊँचाई कितनी है ? उन्हें दी गई आकृति से तय करो । उनवेन गुणनफल का आधा तय करो । इसे वर्ग इकाई में लिखो ।
6. चरण 4 और 5 से जो उत्तर प्राप्त हुए, उन्हें देखकर तुम किस निष्कर्ष पर पहुँचे, लिखो ।

निष्कर्ष: त्रिभुज का क्षेत्रफल $=\frac{1}{2} \times$ आधार की लंबाई \times ऊँचाई
7. त्रिभुज के आधार और ऊँचाई को आयत वे क्रमश: आधार और ऊँचाई वे रूप में लेकर उसका क्षेत्रफल कितनी वर्ग इकाई होगा, ज्ञात करो ।
8. आयत के क्षेत्रफल और त्रिभुज के क्षेत्रफल में क्या संबध है ?

संबंध: आयत का क्षेत्रफल $=2 \times$ त्रिभुज का क्षेत्रफल
वि.द्र.: (पिछली कक्षा में तुमने वर्ग कागज द्वारा किसी क्षेत्र का क्षेत्रफल ज्ञात करने की प्रणाली पढ़ी है । सामान्यतया किसी समतल पर स्थित किसी क्षेत्र का क्षेत्रफल उपर्युक्त प्रणाली से ज्ञात होता है ।)
(B) समवाहु त्रिभुज का क्षेत्रफल समवाहु त्रिभुज की भुजा की लंबाई a इकाई हो तो इसकी ऊँचाई $=\frac{\sqrt{3}}{2} \mathrm{a}$ इकाई होगी ।
ABC समबाहु त्रिभुज का क्षेत्रफल $=\frac{1}{2} \times$ आधार की लंबाई \times ऊँचाई $=\frac{1}{2} \times \mathrm{BC} \times \mathrm{AD}=\frac{1}{2} \mathrm{a} \times \frac{\sqrt{3}}{2} \mathrm{a}=\frac{\sqrt{3}}{4} \mathrm{a}^{2}$ वर्ग इकाई

(आवृति-5.16)

समवाहु त्रिभुज की प्रत्येक भुजा की लंबाई a इकाई हो तो क्षेत्रफल $=\frac{\sqrt{3}}{4} \mathrm{a}^{2}$ वर्ग इकाई है ।...(i) ऊँचाई ज्ञात हो तो समवाहु त्रिभुज का क्षेत्रफल $=\frac{1}{\sqrt{3}}$ (ऊँचाई) ${ }^{2}$ वर्ग इकाई.... (ii)
(ii) का प्रमाण खुद सत्यापित करो ।
(C) त्रिभुज की तीनों भुजाओं की लंबाई ज्ञात हो तो क्षेत्रफल जानना:

एक त्रिभुज की तीनों भुजाओं की लंबाई a, b और c इकाई हो तो
परिमाप $2 \mathrm{~s}=\mathrm{a}+\mathrm{b}+\mathrm{c} \Rightarrow \mathrm{s}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2}$ अर्थात् अर्द्ध परिमाप $=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2}$
त्रिभुज का क्षेत्रफल $=\sqrt{\mathrm{s}(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}$ वर्ग इकाई $(\mathrm{S}=$ अर्द्ध परिमाप)
(इसे हेरन का सूत्र (Heron's Formula) माना जाता है । कहा जाता है कि यह सूत्र भी आर्यभट्ट को ज्ञात था। क्षेत्रफल की माप की प्रचलित इकाई:

लंबाई की इकाई	वर्ग करने से	क्षेत्रफल की इकाई
1 मी. $=10$ डेसी.मी.	$\Rightarrow 1$ वर्ग मी.	$=100$ वर्ग डेसी. मी.
1 मी. $=10$ से.मी.	$\Rightarrow 1$ वर्ग मी.	$=10,000$ वर्ग से.मी.
1 डेका.मी. $=10$ मी.	$\Rightarrow 1$ वर्ग डेका मी.	$=100$ वर्ग मी. $=1$ एयर
1 हेकटो.मी. $=100$ मी	$\Rightarrow 1$ वर्ग हेक्टो. मी.	$=1$ हेक्टर $=10,000$ व.मी.

प्रश्नावली :

उदाहरण-1: एक त्रिभुजाकार क्षेत्र का क्षेत्रफल 5.4 एयर है । इसके आधार की लंबाई 27 मी. है। इसकी ऊँचाई ज्ञात करो ।

हल : दिए गए त्रिभुज का क्षेत्रफल $=5.4$ एयर $=5.4 \times 100$ व.मी. $=540$ व.मी.
आधार की लंबाई $=27$ मी. है । \therefore ऊँचाई $=\frac{2 \times \text { क्षेत्रफल }}{\text { आधार की लंबाई }}=\frac{2 \times 540}{27}=40$ मी. (उत्तर)
उदाहरण-2: ABC समकोण त्रिभुज का $\angle \mathrm{B}$ समकोण है । $\mathrm{AB}=60$ डेसी.मी. है ।
$\mathrm{BC}=45$ डेसी.मी. है । तब $\overline{\mathrm{AC}}$ के प्रति लंब $\overline{\mathrm{BD}}$ की लंबाई ज्ञात करो ।
हल : $\mathrm{AB}=60$ डेसी.मी. $\mathrm{BC}=45$ डेसी.मी.
\therefore विकर्ण $=\overline{\mathrm{AC}}$ की लंबाई $=\sqrt{60^{2}+45^{2}}$ डेसी.मी. $=\sqrt{15^{2}\left(4^{2}+3^{2}\right)}$ डेसी.मी.

$$
\begin{aligned}
& =\sqrt{15^{2} \times 5^{2}} \text { डेसी.मी. } \\
& =15 \times 5 \text { डेसी.मी. }=75 \text { डेसी.मी. । }
\end{aligned}
$$

$\triangle \mathrm{ABC}$ का क्षेत्रफल $=\frac{1}{2} \times \mathrm{AB} \times \mathrm{BC}=\frac{1}{2} \times \mathrm{AC} \times \mathrm{BD}$ $\Rightarrow \frac{1}{2} \times 60 \times 45=\frac{1}{2} \times 75 \times \mathrm{BD}$
$\Rightarrow \mathrm{BD}=\frac{60 \times 45}{75}=36$ डेसी.मीटर (उत्तर)

(आवृति-5.17)

उदाहरण-3: एक समवाहु त्रिभुज की प्रत्येक भुजा की लंबाई 16 से.मी. है ।
(i) समवाहु त्रिभुज की ऊँचाई ज्ञात करो । (ii) क्षेत्रफल ज्ञात करो ।

हल : (i) समवाहु त्रिभुज की ऊँचाई $=$ प्रत्येक भुजा की लंबाई $\times \frac{\sqrt{3}}{2}$

$$
=16 \times \frac{\sqrt{3}}{2} \text { से.मी. }=8 \sqrt{3} \text { से.मी. (उत्तर) }
$$

(ii) समवाहु त्रिभुज का क्षेत्रफल $=\frac{\sqrt{3}}{4} \times$ (प्रत्येक भुजा की लंबाई) $)^{2}$

$$
=\frac{\sqrt{3}}{4} \times 16^{2} \text { वर्ग से.मी. }=64 \sqrt{3} \text { वर्ग से.मी. (उत्तर) }
$$

बिकल्प प्रणाली: समवाहु त्रिभुज का क्षेत्रफल $=\frac{1}{\sqrt{3}} \times(\text { ऊँचाई })^{2}=\frac{1}{\sqrt{3}} \times(8 \sqrt{3})^{2}$ वर्ग से.मी. $=\frac{64 \times 3}{\sqrt{3}}$ वर्ग से.मी. $=64 \sqrt{3}$ वर्ग से.मी. (उत्तर)

उदाहरण-4:

एक त्रिभुज की तीनों भुजाओं की लंबाई क्रमश: 39 मी., 41 मी. और 50 मी. है । इसकी वृहत्तम भुजा पर सम्मुख सम्मुख (शीर्ष) बिंदु सी रचित लंब की माप ज्ञात करो ।

हल : त्रिभुज की तीनों भुजाएँ दी गई हैं। वे हैं - 39 मी., 41 मी. और 50 मी.
त्रिभुज का अर्द्ध परिमाप $=\mathrm{S}=\frac{39+41+50}{2}$ मी. $=\frac{130}{2}$ मी. $=65$ मी.
त्रिभुज का क्षेत्रफल $=\sqrt{\mathrm{S}(\mathrm{S}-\mathrm{a})(\mathrm{S}-\mathrm{b})(\mathrm{S}-\mathrm{c})}$

$$
\begin{aligned}
& =\sqrt{65(65-39)(65-41)(65-50)} \text { व.मी. } \\
& =\sqrt{65 \times 26 \times 24 \times 15} \text { व.मी. } \\
& =\sqrt{13 \times 5 \times 13 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5} \text { व.मी. } \\
& =13 \times 5 \times 3 \times 2 \times 2=780 \text { व.मी. }
\end{aligned}
$$

त्रिभुज की वृहत्तम भुजा की लंबाई $=50$ मी.,
मान लो सम्मुख शीर्ष बिंदु से रचित लंब $=x$ मी., \therefore त्रिभुज का क्षेत्रफल $=\frac{1}{2} \times 50 \times \mathrm{x}$ व.मी.

प्रश्न के अनुसार $=\frac{1}{2} \times 50 \times \mathrm{x}=780$

$$
\Rightarrow x=\frac{780 \times 2}{50} \text { मी. }=31.20 \text { मी. }
$$

अथवा वृहत्तम भुजा के प्रति रचित लंब $=\frac{2 \times \text { क्षेत्रफल }}{\text { वृहत्तम भुजा की लंबाई }}$ मी.

$$
=\frac{780 \times 2}{50} \text { मी. }=31.20 \text { मी. (उत्तर) }
$$

अभ्यास - 5(d)

1. एक त्रिभुज के आधार की लंबाई 2.55 डेसी.मी. है । ऊँचाई 68 से.मी. है। क्षेत्रफल ज्ञात करो।
2. एक त्रिभुजाकार पार्क की एक भुजा की लंबाई 288 मी. है । उस भुजा पर सम्मुख शीर्ष बिंदु से रचित लंब 115 मी. है। क्षेत्रफल ज्ञात करो ।
3. नीचे दो समवाहु त्रिभुजों की प्रत्येक की भुजा की लंबाई दी गई है । प्रत्येक का क्षेत्रफल ज्ञात करो ।
(i) $14 \sqrt{2}$ से.मी
(ii) $8 \sqrt{6}$ मी.
4. नीचे दो समवाहु त्रिभुजों की ऊँचाई दी गई है। प्रत्येक का क्षेत्रफल ज्ञात करो ।
(i) 12 डेसी.मी.
(ii) $36 \sqrt{3}$ मी.
5. नीचे के समद्विवाहु त्रिभुज का क्षेत्रफल ज्ञात करो ।
(i) आधार की लंबाई 42 से.मी. है । प्रत्येक बराबर भुजा की लंबाई 35 से.मी.
(ii) आधार की लंबाई 22 मी. है। प्रत्येक बराबर भुजा की लंबाई 61 मी. है ।
(iii) आधार की लंबाई x से.मी. है । प्रत्येक बराबर भुजा की लंबाई y से.मी. है ।
6. $\triangle \mathrm{ABC}$ में $\overline{\mathrm{AD}}$ और $\overline{\mathrm{BE}}$ क्रमश: $\overline{\mathrm{BC}}$ और $\overline{\mathrm{CA}}$ के प्रति लंब है । $\mathrm{BC}=30$ से.मी. $\mathrm{CA}=35$ और $\mathrm{AD}=25$ से.मी. है । $\overline{\mathrm{BE}}$ की लंबाई ज्ञात करो ।
7. दो त्रिभुजों में से एक के आधार की लंबाई और ऊँचाई क्रमशः दूसरे के आधार की लंबॉई और ऊँचाई से दुगुनी और तिगुनी है । दोनों त्रिभुजों के क्षेत्रफल का अनुपात ज्ञात करो । (त्रिभुज दोनों के लिए आधार की लंबाई x, और $2 x$ तथा ऊँचाई y और $3 y$ लो ।)
8. एक समकोण समद्विवाहु त्रिभुज के विकर्ण की लंबाई 120 डेसी.मी. है। इसका क्षेत्रफल ज्ञात करो ।
9. एक समकोण समद्विवाहु त्रिभुज का क्षेत्रफल 484 व.मी. है। इसके विकर्ण की लंबाई ज्ञात करो ।
10. नीचे कुछ त्रिभुजों की भुजाओं की लंबाई दी गई है । प्रत्येक का क्षेत्रफल ज्ञात करो ।
(i) 13 से.मी., 14 से.मी., और 15 से.मी. है ।
(ii) 25 से.मी., 26 से.मी., और 17 से.मी. है।
(iii) 39 मी. 42 मी. और 45 मीटर
11. एक त्रिभुज की भुजाओं की लंबाई क्रमशः 10 से.मी., 17 से.मी. और 21 से.मी. है। त्रिभुज का क्षेत्रफल ज्ञात करो । त्रिभुज की वृहत्तम भुजा पर सम्मुख शीर्ष बिंदु से रचित लंब ज्ञात करो ।
12. दिए गए ABCD वर्ग में AED एक समकोण त्रिभुज हैं । इसकी $\overline{\mathrm{AE}} 2 \mathrm{x}$ से.मी. है। $\overline{\mathrm{ED}}$ भुजा की लंबाई x से.मी. है । AED त्रिभुज का क्षेत्रफल 16 वर्ग से.मी. है। ABCDE क्षेत्र का क्षेत्रफल ज्ञात करो ।

13. एक समकोण त्रिभुज के समकोण की एक आसत्र भुजा की लंबाई 44 मी है। अन्य भुजा दोनों की लंबाई का योगफल 88 मीटर है। इसका क्षेत्रफल ज्ञात करो ।
14. एक समकोण समद्विवाहु त्रिभुज की वृहत्तम भुजा की लंबाई 56 से.मी. है। इस भुजा पर समकोण के शीर्ष बिंदु से रचित लंब की माप ज्ञात करो ।
15. एक समकोण समद्विवाहु त्रिभुज में समकोण की एक आसत्र भुजा की लंबाई 96 से.मी. है । इसके समकोण के शीर्षबिंदु से विकर्ण पर रचित लंब की माप ज्ञात करो ।

5.4 समांतर चतुर्भुज और सम चतुर्भुज का क्षेत्रफल

(क) समांतर चतुर्भुज
रेखा चतुर्भुज जिसमें सम्मुख भुजाएँ समांतर हों समांतर चतुर्भुज कहलाता है ।
समांतर चतुर्भुज के संबंध में कुछ तथ्य नीचे दिए गए है । आवश्यकता के अनुसार इनका ब्यवहार किया जाता है । इन्हें याद रखना आवश्यक है । समांतर चतुर्भुज में :-
(i) सम्मुख भुजाएँ बराबर होती हैं ।
(ii) सम्मुख कोणों की माप बराबर होती है ।
(iii) दोनों विकर्ण एक दूसरे को समद्विभाजित करते हैं ।
(iv) प्रत्येक विकर्ण पर इसवे दोनों तरफ वे शीर्ष बिंदुओं से रचित दोनों लंब बराबर होते हैं ।
(v) प्रत्येक विकर्ण समांतर क्षेत्र को दो सम क्षेत्रफल वाले त्रिभुजों में बाँट देता है ।
vi) दोनों विकर्णों से चतुर्भुज चार सम क्षेत्रफल वाले त्रिभुजों में बँट जाता है ।
(vii) वर्ग, आयत और सम चतुर्भुज भी एक एक समांतर चतुर्भुज हैं । अतएव उपर्युक्त सारे तथ्य वर्ग, आयत और सम चतुर्भुज पर भी लागू होते हैं ।

समांतर चतुर्भुज का क्षेत्रफल ज्ञात करना :

समांतर चतुर्भुज का एक विकर्ण रचित होने से समांतर चतुर्भुज चार सम क्षेत्रफल वाले त्रिभुजों में परिणत होता है । दो विकर्ण रचित होने से समांतर चतुर्भुज चार सम क्षेत्रफल वाले त्रिभुजों में परिणत होता है । उक्त त्रिभुजों का क्षेत्रफल ज्ञात करने से समांतर चतुर्भुज का क्षेत्रफल ज्ञात होगा ।

(आवृति-5.19)

समांतर चतुर्भुज के समांतर भुजाओं के बीच की दूरी या लंब को उस क्षेत्र वी ऊँचाई कहा जाता है । आवृति (5.19) में $\overline{\mathrm{BC}}$ आधार के प्रति $\overline{\mathrm{AE}}$ लंब है । $\overline{\mathrm{AE}}$ को समांतर चतुर्भुज की ऊँचाई कहा जाता है ।
(A) एक भुजा की लंबाई और उस भुजा के प्रति रचित ऊँचाई ज्ञात हो तो समांतर चतुर्भुज का क्षेत्रफल निरूपण :

ABCD समांतर चतुर्भुज में A बिंदु से $\overline{\mathrm{BC}}$ के प्रति लंब $\overline{\mathrm{AE}}$ खींचो । $\overline{\mathrm{AC}}$ विकर्ण खींचों । अब ABCD समांतर चतुर्भुज $\overline{\mathrm{AC}}$ विकर्ण द्वारा दो सम क्षेत्रफल वाले त्रिभुजों में बाँट देता है ।
$\triangle \mathrm{ABC}$ का क्षेत्रफल $=\frac{1}{2} \times \mathrm{BC} \times \mathrm{AE}$

(आवृतति-5.20)
$\therefore \mathrm{ABCD}$ समांतर चतुर्भुज का क्षेत्रफल $=2 \times \Delta \mathrm{ABC}$ का क्षेत्रफल
$=2 \times \frac{1}{2} \times \mathrm{BC} \times \mathrm{AE}=\mathrm{BC} \times \mathrm{AE}$

उसी प्रकार A बिंदु से $\overline{\mathrm{DC}}$ के प्रति लंब $\overline{\mathrm{AF}}$ की रचना करके ज्ञात किया जा सकता है कि ABCD समांतर चतुर्भुज का क्षेत्रफल $=\mathrm{DC} \times \mathrm{AF}$ है ।
अर्थात् समांतर चतुर्भुज का क्षेत्रफल $=$ एक भुजा की लंबाई \times उस भुजा के प्रति रचित लंब/ऊँचाई

तुम्हारे लिए गति-विधियाँ

1. एक वर्ग कागज या ग्राफ कागज पर एक समांतर चतुर्भुज की रचना करो । उसके बाद ग्राफ कागज से वह (समांतर चतुर्भुज) काटकर अलग करो ।
2. कागज को मोडकर $\overline{\mathrm{BC}}$ पर P विंदु निरूपण करो, जैसे $\overline{\mathrm{AP}}, \overline{\mathrm{BC}}$ पर लंब हो ।
3. $\overline{\mathrm{AP}}$ के किनारे से कागज को काटकर ABCD से अलग करो ।
4. ABP त्रिभुजाकार भाग के ABCD से अलग कर चुकने के $े$ बाद ABP त्रिभुजाकार भाग को APCD चित्रित भाग के साथ (आवृति में जैसे दिखाई पड़ता है) गोंद से चिपकाकर रखो, ताकि $\overline{\mathrm{DC}}$ का किनारा $\overline{\mathrm{AB}}$ वे किनारे से सटकर रहे ।
5. अब जो आयत बना है, उसका क्षेत्रफल क्या ABCD समांतर चतुर्भुज के क्षेत्रफल के बराबर होगा ? यदि बराबर होगा, तब क्यों होगा ?

6. चरण-1 से वर्ग कागज पर रचित समांतर चतुर्भुज का क्षेत्रफल ज्ञात करो । फिर चरण5 में निकले क्षेत्रफल से मिलाकर देखो । क्या देखते हो ?
(B) एक विकर्ण और उसके सम्मुख किसी शीर्षबिंदु से इस पर रचित लंब दिए गए हैं, तो समांतर चतुर्भुज का क्षेत्रफल ज्ञात करना :

बगल में ABCD समांतर चतुर्भुज का विकर्ण $\overline{\mathrm{AC}}$ और D बिंदु पर रचित DE दिखाया गया है ।
ABCD समांतर चतुर्भुज का क्षेत्रफल

(आवृति-5.21)
$=2 \times \Delta \mathrm{ACD}$ का क्षेत्रफल $=2 \times \frac{1}{2} \times \mathrm{AC} \times \mathrm{DE}=\mathrm{AC} \times \mathrm{DE}$
अर्थात्, समांतर चतुर्भुज का क्षेत्रफल $=$ एक विकर्ण \times इस विकर्ण पर सम्मुख शीर्ष बिंदु से
रचित लंब है ।
(C) एक भुजा और दोनों विकर्णों के प्रतिच्छेद बिंदु से उस भुजा पर रचित लंब दिए गए हों तो समांतर चतुर्भुज का क्षेत्रफल ज्ञात करना ।

बगल में ABCD समांतर चतुर्भुज की भुजा $\overline{\mathrm{BC}}$ और इसके प्रति दोनों विकर्णों के प्रतिच्छेद बिंदु से रचित लंब $\overline{\mathrm{OP}}$ दिए गए हैं। ABCD समांतर चतुर्भुज का क्षेत्रफल

$=4 \times \Delta \mathrm{ODC}$ का क्षेत्रफल

(\therefore समांतर चतुर्भुज के दोनों कर्ण इसे चार सम क्षेत्रफल वाले त्रिभुजों में परिणत करते हैं।)

(आवृति-5.22)

$$
=4 \times \frac{1}{2} \times \mathrm{BC} \times \mathrm{OP}=2 \times \mathrm{BC} \times \mathrm{OP}
$$

\therefore समांतर चतुर्भुज का क्षेत्रफल $=\mathbf{2} \times$ एक भुजा की लंबाई \times दोनो विकर्णों के प्रतिच्छेद

 बिंदु से उस भुजा के प्रति रचित लंब(D) दो आसत्र भुजाएँ और एक विकर्ण की लंबाई ज्ञात हो तो समांतर चतुर्भुज का क्षेत्रफल ज्ञात करना:

ABCD समांतर चतुर्भुज में
$\mathrm{AC}=\mathrm{b}$ इकाई, $\mathrm{BC}=\mathrm{a}$ इकाई, $\mathrm{AB}=\mathrm{c}$ इकाई हैं $\mathrm{ABC} \Delta$ का अर्द्धपरिमाप s है ।
$\mathrm{s}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2}$ इकाई होगी

(आवृति-5.23)
$\therefore \mathrm{ABC} \Delta$ का क्षेत्रफल $=\sqrt{\mathrm{s}(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}$ वर्ग इकाई
ABCD समांतर क्षेत्र का क्षेत्रफल $=2 \times \triangle \mathrm{ABC}$ क्षेत्रफल

$$
=2 \sqrt{\mathrm{~s}(\mathrm{~s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})} \text { वर्ग इकाई }
$$

अर्थात समांतर चतुर्भुज का क्षेत्रफल $=2 \sqrt{\mathrm{~s}(\mathrm{~s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}$
(जहाँ समांतर चतुर्भुज की दो आसत्र भुजाओं की लंबाई a इकाई और c इकाई और विकर्ण की लंबाई b इकाई हो, अतएव $s=\frac{a+b+c}{2}$ होगा
(E) दोनों विकर्ण और एक भुजा की लंबाई ज्ञात हो तो समांतर चतुर्भुज का क्षेत्रफल ज्ञात करना:

ABCD समांतर चतुर्भुज की BC, AC और BD दी गई हैं । $\overline{\mathrm{AC}}$ और $\overline{\mathrm{BD}}$ दोनों विकर्ण एक दूसरे को O बिंदु पर प्रतिच्छेद करते हैं ।
$\Delta \mathrm{ABC}$ में $\mathrm{OB}=\frac{\mathrm{BD}}{2}, \mathrm{CO}=\frac{\mathrm{AC}}{2}$ और BC दी गई । अब $\triangle \mathrm{OBC}$ की तीन भुजाएँ ज्ञात हैं। तब $\sqrt{s(s-a)(s-b)(s-c)}$ सूत्र का प्रयोग करके त्रिभुज का क्षेत्रफल ज्ञात कर सकेंगे ।

(आवृ厅ति-5.24)

ABCD समांतर चतुर्भुज का क्षेत्रफल $=4 \times \triangle \mathrm{OBC}$ का क्षेत्रफल

प्रश्नावली

उदाहरण-1: एक समांतर चतुर्भुज के आधार की लंबाई 25 से.मी. है । उस आधार के प्रति लंब 12 से.मी. है । इसका क्षेत्रफल ज्ञात करो ।

हल : समांतर चतुर्भुज का क्षेत्रफल $=$ आधार की लंबाई \times ऊँचाई

$$
=(25 \times 12) \text { वर्ग से.मी. }=300 \text { वर्ग से.मी. (उत्तर) }
$$

उदाहरण-2: एक समांतर चतुर्भुज के एक विकर्ण की लंबाई 75 से.मी. है । इस विकर्ण के एक पार्श्व के शीर्ष बिंदु से उस विकर्ण के प्रति रचित लंब 12 से.मी. है । समांतर चतुर्भुज का क्षेत्रफल ज्ञात करो ।

हल : समांतर चतुर्भुज का क्षेत्रफल $=$ विकर्ण की लंबाई \times विकर्ण के प्रति रचित लंब

$$
=(75 \text { से.मी. } \times 12 \text { से.मी. }=900 \text { वर्ग से.मी. (उत्तर) }
$$

उदाहरण-3: एक समांतर चतुर्भुज की एक भुजा की लंबाई 25 से.मी. है । दोनो विकर्णों वे प्रतिच्छेद बिंदु से उस भुजा वे प्रति रचित लंब 4.5 से.मी. है । समांतर चतुर्भुज का क्षेत्रफल ज्ञात करो।

हल : आकृति 5.25 में ABCD समांतर चतुर्भुज के दोनों विकर्णों से प्रतिच्छद बिंदु O से $\overline{\mathrm{BC}}$ भुजा वे प्रति रचित लंब $\overline{\mathrm{OE}}$ की लंबाई $=4.5$ से.मी. है । $\mathrm{BC}=25$ से.मी. है ।
$\triangle \mathrm{ABC}$ का क्षेत्रफल $=\frac{1}{2} \times \mathrm{BC} \times \mathrm{OE}$

$=\frac{1}{2} \times 25 \times 4.5$ वर्ग से.मी. $=\frac{112.5}{2}$ वर्ग से.मी. ।
$\therefore \mathrm{ABCD}$ समांतर चतुर्भुज का क्षेत्रफल $=4 \times \Delta \mathrm{OBC}$ का क्षेत्रफल

$$
=4 \times \frac{112.5}{2} \text { वर्ग से.मी. }=225 \text { वर्ग से.मी. (उत्तर) }
$$

उदाहरण-4.

एक समांतर चतुर्भुज की दो आसत्र भुजाओं की लंबाई क्रमश: 39 से.मी. और 45 से.मी. है । इसके एक विकर्ण की लंबाई 42 से.मी. है । समांतर चतुर्भुज का क्षेत्रफल ज्ञात करो।

हल :

(आवृति-5.27)

दिए गए समांतर चतुंभुर्ज की $\mathrm{BC}=\mathrm{a}=45$ से.मी., $\mathrm{AC}=\mathrm{b}=42$ से.मी.,
$\mathrm{AB}=\mathrm{c}=39$ से.मी. ।
$\triangle \mathrm{ABC}$ का परिमाप $=\mathrm{s}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2}=\frac{45+42+39}{2}=63$ से.मी.
$\Delta \mathrm{ABC}$ का क्षेत्रफल $=\sqrt{\mathrm{s}(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}$

$$
\begin{aligned}
& =\sqrt{63(63-45)(63-42)(63-39} \text { वर्ग से.मी. } \\
& =\sqrt{63 \times 18 \times 21 \times 24} \text { वर्ग से.मी. } \\
& =\sqrt{21 \times 3 \times 3 \times 6 \times 21 \times 6 \times 2 \times 2} \text { वर्ग से.मी. } \\
& =21 \times 3 \times 6 \times 2=756 \text { वर्ग से.मी. }
\end{aligned}
$$

ABCD समांतर क्षेत्र का क्षेत्रफल $=2 \times \triangle \mathrm{ABC}$ का क्षेत्रफल

$$
=2 \times 756 \text { वर्ग से.मी. }=1512 \text { वर्ग से.मी. (उत्तर) }
$$

उदाहरण-5: एक समांतर चतुर्भुज के दोनों विकर्णों की लंबाई क्रमशः 34 से.मी. और 78 से.मी. है । इसकी एक भुजा की लंबाई 44 से.मी. है । उस भुजा और उस भुजा की सम्मुख भुजा वे बीच की दूरी (लंब) ज्ञात करो ।

हल : ABCD समांतर चतुर्भुज में
$\mathrm{BC}=44$ से.मी., $\mathrm{BD}=78$ से.मी., $\mathrm{AC}=34$ से.मी. है । AC और BD का प्रतिच्छेद बिंदु ' O ' है ।
$\therefore \mathrm{OB}=\frac{\mathrm{BD}}{2}=\frac{1}{2} \times 78$ से.मी. $=39$ से.मी. है । $\mathrm{OC}=\frac{\mathrm{AC}}{2}=\frac{1}{2} \times 34$ से.मी. $=17$ से.मी. है । $\triangle \mathrm{ABC}$ का अद्ध परिमाप $=\mathrm{s}=\frac{39+44+17}{2}$ से.मी.

$$
=\frac{100}{2} \text { से.मी. }=50 \text { से.मी. }
$$

(आवृति-5.27)
$\Delta \mathrm{OBC}$ का क्षेत्रफल $\quad=\sqrt{\mathrm{s}(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}$

$$
\begin{aligned}
& =\sqrt{50(50-39)(50-44)(50-47)} \text { वर्ग से.मी. है । } \\
& =\sqrt{50 \times 11 \times 6 \times 3} \text { वर्ग से.मी. } \\
& =\sqrt{5 \times 5 \times 2 \times 11 \times 2 \times 3 \times 3 \times 11} \text { वर्ग से.मी. } \\
& =5 \times 2 \times 11 \times 3=330 \text { वर्ग से.मी. }
\end{aligned}
$$

$\therefore \mathrm{ABCD}$ समांतर चतुर्भुंज का क्षेत्रफल $=4 \times \Delta \mathrm{OBC}$ का क्षेत्रफल

$$
=4 \times 330 \text { वर्ग से.मी. }=1320 \text { वर्ग से.मी. }
$$

$\overline{\mathrm{AE}}$ लंब $=\frac{\text { समांतर चतुर्भुज का क्षेत्रफल }}{\text { आधार } \overline{\mathrm{BC}} \text { की लंबाई }}=\frac{1320}{44}$ से.मी. $=30$ वर्ग से.मी. (उत्तर)

अभ्यास-5(e)

1. निम्न समांतर चतुर्भुजों का क्षेत्रफल ज्ञात करो, जिनकी:
(i) एक भुजा की लंबाई 4 डेसी. मी. है । उस भुजा के प्रति रचित लंब 1 डेसी.मी. 8 से.मी. है ।
(ii) एक भुजा की लंबाई 2 मी. 55 से.मी. है । उस भुजा के प्रति रचित ऊँचाई 1 मी. 4 से.मी. है ।
(iii) एक विकर्ण की लंबाई 12 से.मी. और इसके एक तरफ के शीर्ष बिंदु से इसके प्रति रचित लंब 4 मी है ।
2. एक समांतर चतुर्भुज की दो आसन्न भुजाओं और एक विकर्ण की लंबाई क्रमशः 26 से.मी., 28 से.मी. और 30 से.मी. है। उस क्षेत्र का क्षेत्रफल ज्ञात करो ।
3. एक समांतर चतुर्भुज के दोनों विकर्ण क्रमशः 204 से.मी. और 252 से.मी. के हैं। एक भुजा की लंबाई 60 से.मी. है। इसका क्षेत्रफल ज्ञात करो ।
4. एक समांतर चतुर्भुज के दोनों विकर्ण क्रमशः 34 से.मी. और 50 से.मी. है। इसकी एक भुजा की लंबाई 26 से.मी. है । उस भुजा और उसकी सम्मुख भुजा के बीच की दूरी (लंब) ज्ञात करो ।
5. एक समांतर चतुर्भुज की दो आसत्र भुजाओं और एक विकर्ण की लंबाई क्रमशः 20 से.मी., 42 से.मी. और 34 से.मी. है । उस क्षेत्र की वृहत्तम भुजा के प्रति रचित ऊँचाई ज्ञात करो ।
6. एक समांतर चतुर्भुज की एक भुजा की लंबाई 7.5 मी. है । इस भुजा पर विकर्ण द्वय वे प्रतिच्छेद बिंदु से रचित लंब 0.8 मी. है । समांतर चतुर्भुज का क्षेत्रफल ज्ञात करो ।
7. 63 मीटर आधार और 36 मी. ऊँचाई वाले त्रिभुज के क्षेत्रफल के साथ एक समांतर चतुर्भुज का क्षेत्रफल बराबर है । समांतर चतुर्भुज के आधार की लंबाई 42 मी. हो तो समांतर चतुर्भुज का लंब ज्ञात करो ।
(ख) सम चतुर्भुज :
परिभाषा : जिस समांतर चतुर्भुज की दो आसन्न भुजाओं की लंबाई एक दूसरे वेว बराबर हों, वह सम चतुर्भुज (Rhombus) कहलाता है ।

सम चतुर्भुज संबंधी कुछ ज्यामितीय तथ्य
(i) सम चतुर्भुज एक अद्वितीय समांतर चतुर्भुज है ।
(सभी समांतर चतुर्भुज सम चतुर्भुज नहीं होते ।)
(ii) इसकी चारों भुजाएँ बराबर की लंबाई की होती है ।
(iii) इसके विकर्ण एक दूसरे के लंब समद्विभाजक होतें हैं ।
(iv) प्रत्येक सम चतुर्भुज उसके विकर्णों से चार सर्वांगसम समकोण त्रिभुजों में बँट जाता है ।
(v) प्रत्येक विकर्ण, सम चतुर्भुज के दोनों सम्मुख कोणों को समद्विभाजित करता है । और
(vi) सम चतुर्भुज के दो जोड़ी समांतर भुजाओं की दूरी (या लंब या ऊँचाई) एक दूसरे वे बराबर होता है ।
सम चतुर्भुज का क्षेत्रफल ज्ञात करना
(A) दोनों विकर्णों की लंबाई ज्ञात हो तो सम चतुर्भुज का क्षेत्रफल ज्ञात करना :

ABCD सम चतुर्भुज के दोनों विकर्ण AC और BD दिए गए हैं, हम जानते हैं कि सम चतुर्भुज के विकर्ण एक दूसरे को लंबवत् सम-द्विभाजित करते हैं । आवृति 5.28 में $\mathrm{AO}=\mathrm{CO}, \mathrm{BO}=\mathrm{DO}$, $\overline{\mathrm{BO}} \perp \overline{\mathrm{AC}}$ और $\overline{\mathrm{DO}} \perp \overline{\mathrm{AC}}$ हैं ।

ABCD सम चतुर्भुज का क्षेत्रफल
$=2 \times \triangle \mathrm{ABC}$ का क्षेत्रफल
$=2 \times \frac{1}{2} \times \mathrm{AC} \times \mathrm{BO}$
$=\mathrm{AC} \times \mathrm{BO}$
$=\mathrm{AC} \times \frac{\mathrm{BD}}{2}=\frac{1}{2}(\mathrm{AC} \times \mathrm{BD})$

दोनों कर्णों में से एक की लंबाई d_{1} और दूसरे की लंबाई d_{2} हो तो चतुर्भुज का क्षेत्रफल $=\frac{1}{2} \mathrm{~d}_{1} \mathrm{~d}_{2}$
अर्थात्, सम चतुर्भुज का क्षेत्रफल $=\frac{1}{2} \times$ विकर्ण दोनों की लंबाई का गुणनफल
सूचना-1 : समचतुर्भुज एक समांतर चतुर्भुज होने के कारण समांतर चतुर्भुज का क्षेत्रफल ज्ञात करने के सूत्र भी सम चतुर्भुज का क्षेत्रफल ज्ञात करने के लिए प्रयुक्त होते हैं ।
(B) सम चतुर्भुज के दोनों विकर्ण दिए गए हों तो भुजा की लंबाई ज्ञात करना:

ABCD सम चतुर्भुज वे विकर्ण द्वय $\overline{\mathrm{AC}}$ और $\overline{\mathrm{BD}}$ एक दूसरे को ' O ' बिंदु पर लंबवत् समद्विभाजित करते हैं ।

मान लो $\mathrm{AC}=\mathrm{d}_{1}$ (पहला विकर्ण) और $\mathrm{BD}=\mathrm{d}_{2}$ (दूसरा विक
$\mathrm{CO}=\frac{\mathrm{d}_{1}}{2}$ और $\mathrm{BD}=\frac{\mathrm{d}_{2}}{2}$
$\therefore \mathrm{BOC}$ समकोण त्रिभुज में

$$
\mathrm{BC}=\sqrt{\mathrm{CO}^{2}+\mathrm{BO}^{2}}=\sqrt{\left(\frac{\mathrm{d}_{1}}{2}\right)^{2}+\left(\frac{\mathrm{d}_{2}}{2}\right)^{2}}
$$

(आवृतति-5.29)

अर्थात सम चतुर्भुज की एक भुजा की लंबाई $=\sqrt{\left(\frac{\mathrm{d}_{1}}{2}\right)^{2}+\left(\frac{\mathrm{d}_{2}}{2}\right)^{2}}=\frac{1}{2} \sqrt{\mathrm{~d}_{1}^{2}+\mathrm{d}_{2}^{2}}$
सम चतुर्भुज की एक भुजा की लंबाई $=\frac{1}{2} \sqrt{(\text { पहला विकर्ण })^{2}+(\text { दूसरा विकण })^{2}}$
मन्तब्य-2 : सम चतुर्भुज के विकर्ण और इसकी भुजा का संबंध प्रतिपादित हुआ । विकर्ण द्वय और भुजा में से किन्ही दो की लंबाई ज्ञात हो तो प्रतिपादित संबंध की सहायता से अन्य की लंबाई निरूपित कि जा सकती है ।
प्रश्नावली :
उदाहरण-1:
एक सम चतुर्भुज वे विकर्णों की लंबाई क्रमशः 16 से.मी. और 12 से.मी. है । सम चतुर्भुज का क्षेत्रफल प्रत्येक भुजा की लंबाई और ऊँचाई ज्ञात करो ।

हल : सम चतुर्भुज का क्षेत्रफल $=\frac{1}{2} \times$ पहला विकर्ण \times दूसरा विकर्ण

$$
=\frac{1}{2} \times 16 \times 12 \text { वर्ग से.मी. }=96 \text { वर्ग से.मी. }
$$

सम चतुर्भुज की प्रत्येक भुजा की लंबाई $=\frac{1}{2} \sqrt{\mathrm{~d}_{1}^{2}+\mathrm{d}_{2}^{2}}=\frac{1}{2} \sqrt{16^{2}+12^{2}}$

$$
\begin{aligned}
& =\frac{1}{2} \sqrt{4^{2}\left(4^{2}+3^{2}\right)}=\frac{1}{2} \sqrt{4^{2}+5^{2}} \\
& =\frac{1}{2} \times 4 \times 5=10 \text { से.मी. }
\end{aligned}
$$

सम चतुर्भुज की ऊँचाई $=\frac{\text { क्षेत्रफल }}{\text { भुजा की लंबाई }}=\frac{96}{10}$ से.मी. $=9.6$ से.मी.

उदाहरण-2

एक सम चतुर्भुज की प्रत्येक भुजा की लंबाई 13 मीटर है । एक विकर्ण की लंबाई 24 मीटर है । इसवे दूसरे विकर्ण की लंबाई और क्षेत्रफल ज्ञात करो ।

हल: सम चतुर्भुज के एक विकर्ण की लंबाई $\left(\mathrm{d}_{1}\right)=24$ मीटर
मान लो अन्य विकर्ण $\left(\mathrm{d}_{2}\right)=2 x$ मीटर
सम चतुर्भुज की भुजा की लंबाई

$$
\begin{aligned}
& =\sqrt{\left(\frac{\mathrm{d}_{1}}{2}\right)^{2}+\left(\frac{\mathrm{d}_{2}}{2}\right)^{2}}=\sqrt{\left(\frac{24}{2}\right)^{2}+\left(\frac{2 \mathrm{x}}{2}\right)^{2}}=\sqrt{(12)^{2}+(\mathrm{x})^{2}} \\
& \Rightarrow(\text { भुजा की लंबाई })^{2}=(12)^{2}+(\mathrm{x})^{2} \Rightarrow(13)^{2}=(12)^{2}+(x)^{2} \\
& \Rightarrow 169=144+x^{2} \Rightarrow 144+x^{2}=169 \\
& \Rightarrow x^{2}=169-144=25 \quad \therefore x=5 \text { मीटर }
\end{aligned}
$$

अन्य विकर्ण की लंबाई $=2 \times 5$ मीटर $=10$ मीटर
सम चतुर्भुज का क्षेत्रफल $=\frac{1}{2} \times$ दोनों विकर्णों का गुणनफल

$$
=\frac{1}{2} \times 24 \times 10=120 \text { वर्ग.मी. (उत्तर) }
$$

अभ्यास - 5(f)

1. नीचे सम चतुर्भुज के दोनों विकर्ण दिए गए हैं। प्रत्येक स्थिति में क्षेत्रफल ज्ञात करो ।
(i) 16 से.मी. और 20 से.मी.
(ii) 20 मी और 15.4 मी.
(iii) $8 \sqrt{2}$ मी. और $4 \sqrt{2}$ मी.
2. नीचे सम चतुर्भुज के दोनों विकर्णों की लंबाई दी गई है । प्रत्येक स्थिति में भुजा की लंबाई ज्ञात करो ।
(i) 40 से.मी. 30 से.मी.
(ii) 14 मी. 48 मी.
(ii) 1.6 से.मी. 3 से.मी.
(v) 1.8 मी और 2.4 मी.
3. एक सम चतुर्भुज का क्षेत्रफल 840 वर्ग.मी. हैं । एक विकर्ण की लंबाई 42 मी. है। इसका दूसरा विकर्ण और परिमाप ज्ञात करो।
4. एक सम चतुर्भुज का विकर्ण उन्य विकर्ण का तीन गुना है । इसका क्षेत्रफल 1944 वर्ग मी. है । विकर्णों की लंबाई ज्ञात करो ।
5. एक सम चतुर्भुज का क्षेत्रफल $684 \sqrt{3}$ वर्ग से.मी. है । इसके एक कोण की माप 60° है । क्षुद्रतर विकर्ण की लंबाई ज्ञात करो ।
6. एक सम चतुर्भुज की एक विकर्ण की लंबाई उसके प्रत्येक भुजा के बराबर है । सम चतुर्भुज का परिमाप 48 से.मी. है । उसका क्षेत्रफल ज्ञात करो ।
7. एक सम चतुर्भुज का परिमाप 16 मीटर है । इसके एक विकर्ण की लंबाई 6 मी. है, अन्य विकर्ण की लंबाई और क्षेत्रफल ज्ञात करो ।

5.5 समलंब चतुर्भुज का क्षेत्रफल

परिभाषा: जिस चतुर्भुज की सम्मुख भुजाओं का एक युग्म समांतर होता है, उस चतुर्भुज को समलंब चतुर्भुज (Trapezium) कहते हैं ।

समलंब चतुर्भुज संबंधी कुछ ज्यामितीय तथ्य:
समलंब चतुर्भुज के असमांतर भुजा द्वय के मध्य बिंदु को संयोग करने वाला रेखाखंड, समांतर भुजा द्वय के साथ समांतर होता है । इसकी लंबाई समांतर भुजा द्वय के योगफल का आधे के बराबर है। (इसका प्रमाण परवर्ती कक्षा में जानोगे ।)

जिस चतुर्भुजाकार क्षेत्र का सम्मुख भुजाओं का एक युग्म समांतर हो, वह समलंब (Trapezium) है। समलंब चतुर्भुजाकार क्षेत्र वे क्षेत्रफल को हम संक्षेप में समलंब चतुर्भुज का क्षेत्रफल कहेंगे ।

बगल की आकृति में ABCD चतुर्भुज की $\overline{\mathrm{AB}}$ और $\overline{\mathrm{DC}}$ भुजाएँ एक दूसरों के समांतर हैं। अतएब यह एक समलंब चतुर्भुज हैं।

मान लो $\mathrm{AB}=\mathrm{a}$ इकाई, $\mathrm{DC}=\mathrm{b}$ इकाई
$\overline{\mathrm{AM}}$ और $\overline{\mathrm{BN}}$ क्रमशः A और B बिंदु से $\overline{\mathrm{DC}}$ के प्रति लंब है । $\overline{\mathrm{AM}}$ और $\overline{\mathrm{BN}}$ दोनों की लंबाई बराबर है । वे दोनों समलंब चतुर्भुज की ऊँचाई (h) हैं।

(आवृحति-5.30) समलंब चतुर्भुज का क्षेत्रफल :

ABCD समलंब चतुर्भुज का क्षेत्रफल
$=\triangle \mathrm{AMD}$ का क्षेत्रफल $+\triangle \mathrm{BNC}$ का क्षेत्रफल +AMNB आयत का क्षेत्रफल
$=\frac{1}{2} \times \mathrm{DM} \times \mathrm{AM}+\frac{1}{2} \times \mathrm{CN} \times \mathrm{BN}+\mathrm{MN} \times \mathrm{AM}$.
$=\frac{1}{2} \mathrm{DM} \times \mathrm{h}+\frac{1}{2} \mathrm{CN} \times \mathrm{h}+\mathrm{MN} \times \mathrm{h}(\because \mathrm{AM}=\mathrm{BN}=\mathrm{h}$ इकाई $)$
$=\frac{1}{2} h(D M+N C+2 M N)=\frac{1}{2} h(D M+M N+N C+M N)$
$=\frac{1}{2} \mathrm{~h}(\mathrm{DC}+\mathrm{MN})=\frac{1}{2}(\mathrm{DC}+\mathrm{AB}) \times \mathrm{h}(\because \mathrm{MN}=\mathrm{AB}$ है I$)$
$=\frac{1}{2}(\mathrm{AB}+\mathrm{DC}) \times \mathrm{h}=\frac{1}{2}(\mathrm{a}+\mathrm{b}) \times \mathrm{h}$ वर्ग इकाई
समलंब चतुर्भुज का क्षेत्रफल $=\frac{1}{2} \times$ समांतर भुजा द्वाय की लंबाई का योगफल \times ऊँचाई (या) $=$ समांतर भुजाओं से भिन्न अन्य भुजा द्वुय के मध्यबिंदु की संयोजक रेखाखंड की लंबाई \times ऊँचाई

खुद करो :

1. दी गई आकृति में $\overline{\mathrm{AB}} \| \overline{\mathrm{DC}}, \mathrm{AM} \perp \mathrm{DC}$, और $\mathrm{BN} \perp \mathrm{DC}$ है ।
(i) $\triangle \mathrm{ADC}$ का क्षेत्रफल ज्ञात करो ।
(ii) $\triangle \mathrm{ABC}$ का क्षेत्रफल ज्ञात करो ।
(iii) ABCD चतुर्भुज का क्षेत्रफल ज्ञात करो ।
(iv) $\triangle \mathrm{ADM}$ और $\triangle \mathrm{BNC}$ वे क्षेत्रफलों का

(आवृति-5.31) योगफल ज्ञात करो ।
(v) AMNB आयत का क्षेत्रफल ज्ञात करो ।
(vi) चरणों (iv) और (v) में ज्ञात ऊत्तर से चतुर्भुज का क्षेत्रफल ज्ञात करो ।
(vii) चरणों (iii) और (vi) में प्राप्त उत्तर से मिलान करके देखो । क्या देखते हो ?
2. ऊपर की आवृति (5.31) में
(i) $\overline{\mathrm{AD}}$ से समांतर करके $\overline{\mathrm{BL}}$ की रचना करो जो $\overline{\mathrm{DC}}$ को L बिंदु पर प्रतिच्छेद करेगी ।
(ii) उत्पत्न ABLD समांतर चतुर्भुज का क्षेत्रफल ज्ञात करो ।
(iii) उत्पन्न $\triangle \mathrm{LBC}$ का क्षेत्रफल ज्ञात करो ।

(iv) ABCD समलंब चतुर्भुज का क्षेत्रफल ज्ञात करो ।

तुम्हारे लिए गति-विधियाँ

1. एक वर्ग कागज या ग्राफ कागज पर एक समलंब चतुर्भुज की रचना करो । ग्राफ कागज से समलंब चतुर्भुज को काटकर अलग कर लो ।
2. समलंब चतुर्भुज के कागज को मोड़कर $\overline{\mathrm{DC}}$ का मध्यबिंदु
 चिह्नित करवे उसका नाम ' X ' दो ।
3. $\overline{\mathrm{AX}}$ के किनारे से समलंब चतुर्भुज को काटकर दो टुकडे करो । $\triangle \mathrm{ADX}$ को नीचे जिस प्रकार दिखाया गया है उसी प्रकार रखो, जैसे कि $\overline{\mathrm{XD}}$ का किनारा, $\overline{\mathrm{CX}}$ के किनारे से सटकर रहे ।

4. जो नया त्रिभुज ABY प्राप्त हुआ, उसका क्षेत्रफल क्या ABCD समलंब चतुर्भुज के क्षेत्रफल के बराबर होगा ? यदि उत्तर 'हाँ' है, तब क्यों बराबर होगा ?
5. चरण (1) से वर्ग कागज पर चिह्नित समलंब चतुर्भुज का क्षेत्रफल ज्ञात करो। उसके बाद चरण (4) में जो क्षेत्रफल मिला है, उससे मिलान करो । क्या देख रहे हो ?

उदाहरण-1: एक समलंब चतुर्भुज की समांतर भुजाओं की लंबाई क्रमशः 50 से.मी. और 38 से.मी. है। इसकी ऊँचाई 15 से.मी. है। इसका क्षेत्रफल ज्ञात करो ।
हल : यहाँ समांतर भुजा दोनों की लंबाई $\mathrm{a}=50$ से.मी., $\mathrm{b}=38$ से.मी., ऊँचाई $(\mathrm{h})=15$ से.मी.
\therefore समलंब चतुर्भुज का क्षेत्रफल $=\frac{1}{2}(\mathrm{a}+\mathrm{b}) \times \mathrm{h}$

$$
=\frac{1}{2}(50+38) \times 15 \text { वर्ग से.मी. }=660 \text { वर्ग से.मी. है । }
$$

उदाहरण-2: एक समलंब चतुर्भुज का क्षेत्रफल 810 व.मी. है । समांतर भुजा दोनों की लंबाई क्रमशः 37 मी. और 17 मी. है, इसकी ऊँचाई (h) ज्ञात करो ।

हल : यहाँ $\mathrm{a}=37$ मी., $\mathrm{b}=17$ मी. और ऊँचाई $=\mathrm{h}$ है ।
समलंब चतुर्भुज का क्षेत्रफल $=\frac{1}{2}(\mathrm{a}+\mathrm{b}) \times \mathrm{h}$ व.मी.
$=\frac{1}{2}(37+17) \times \mathrm{h}=810, \quad \Rightarrow \frac{1}{2}(54) \mathrm{h}=810, \quad \Rightarrow 27 \mathrm{~h}=810, \Rightarrow \mathrm{~h}=\frac{810}{27}=30$
\therefore ऊँचाई 30 मीटर होगी । (उत्तर)
उदाहरण-3: एक समलंब चतुर्भुज का क्षेत्रफल 48 व.मी. है । समांतर भुजाओं से भिन्न अन्य भुजा द्वयय के मध्यबिंदु के संयोजक रेखाखंड की लंबाई 12 मी. है । समलंब चतुर्भुज की ऊँचाई ज्ञात करो ।

हल : समांतर भुजाओं से भिन्न अन्य भुजा द्वय के मध्यबिंदु की संयोजक रेखाखंड की लंबाई \times ऊँचाई $=$ समलंब चतुर्भुज का क्षेत्रफल $=12 \times \mathrm{h}=48, \Rightarrow \mathrm{~h}=\frac{48}{12}=4$ मी.
\therefore ऊँचाई 4 मीटर होगी । (उत्तर)
उदाहरण-4: एक समलंब चतुर्भुज की समांतर भुजाएँ क्रमशः 16 मी, और 30 मी. हैं । अन्य भुजाओं की लंबाई 13 मी और 15 मी. है। इसका क्षेत्रफल ज्ञात करो ।

हल : ABCD समलंब चतुर्भुज में $\overline{\mathrm{AB}} \| \overline{\mathrm{CD}}$
$\mathrm{AB}=16$ मी., $\mathrm{DC}=30$ मी. है।

(आवृरति-5.32) $\mathrm{BC}=15$ मी, $\mathrm{AD}=13$ मी. । $\overline{\mathrm{BE}} \| \overline{\mathrm{AD}}$ की रचना करो । अब ABED एक समांतर चतुर्भुज है । $\Rightarrow \mathrm{BE}=\mathrm{AD}=13$ मी. है । $\mathrm{DE}=\mathrm{AB}=16$ मी. है। $\mathrm{EC}=\mathrm{DC}-\mathrm{DE}=(30-16)=14$ मी है। $\triangle \mathrm{BEC}$ का अद्ध परिमाप $\mathrm{S}=\frac{15+14+13}{2}$ से.मी. $=21$ से.मी. $\Delta \mathrm{BEC}$ का क्षेत्रफल $=\sqrt{\mathrm{s}(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}=\sqrt{21(21-15)(21-14)(21-13)}$ व.से.मी.

$$
=\sqrt{21 \times 6 \times 7 \times 8} \text { वर्ग से.मी. }=84 \text { वर्ग से.मी. }
$$

$\triangle \mathrm{BEC}$ की ऊँचाई $\mathrm{BN}=\frac{2 \times \text { क्षेत्रफल }}{\text { आधार की लंबाई }}=\frac{2 \times 84}{14}$ मी. $=12$ मीटर
$\therefore \mathrm{ABCD}$ समलंब चतुर्भुज की ऊँचाई $=\mathrm{BN}=12$ मीटर
$\therefore \mathrm{ABCD}$ समलंब चतुर्भुज का क्षेत्रफल $=\frac{1}{2}(\mathrm{AB}+\mathrm{DC}) \mathrm{BN}=\frac{1}{2}(16+30) \times 12$ ब.मी.

$$
=\frac{1}{2} \times 46 \times 12 \text { बर्ग मीटर }=276 \text { बर्ग मीटर (उत्तर) }
$$

उदाहरण-5: एक समलंब चतुर्भुज की समांतर भुजाएँ क्रमशः 35 मी और 50 मी. की है । इसके अन्य भुजाओं में से एक समांतर भुजा के प्रति लंब है । अन्य भुजा 17 मीटर है । समलंब चतुर्भुज का क्षेत्रफल ज्ञात करो ।

हल : ABCD समलंब चतुर्भुज की $\overline{\mathrm{AB}} \| \overline{\mathrm{DC}}$, और $\overline{\mathrm{AD}} \perp \overline{\mathrm{DC}}$ है । $\overline{\mathrm{BE}} \perp \overline{\mathrm{DC}}$ की रचना करो । अब ABCD आयत प्राप्त हुआ । $\mathrm{DE}=\mathrm{AB}=35$ मी. EC $=\mathrm{DC}-\mathrm{DE}=(50-35)=15$ मी.

BEC समकोण त्रिभुज में
$\mathrm{BE}=\sqrt{\mathrm{BC}^{2}-\mathrm{EC}^{2}}=\sqrt{17^{2}-15^{2}}$

(आवृतति-5.33)
$=\sqrt{(17+15)(17-15)}=\sqrt{32 \times 2}=8$ मी.
\therefore समलंब चतुर्भुज की ऊँचाई $=\mathrm{h}=8$ मीटर है।
$\mathrm{a}=35$ मी., $\mathrm{b}=50$ मी. (समांतर भुजाएँ)
समलंब चतुर्भुज का क्षेत्रफल $=\frac{1}{2}(\mathrm{a}+\mathrm{b}) \mathrm{h}=(35+50) \times 8$ वर्ग मीटर

$$
=\frac{1}{2} \times 85 \times 8 \text { ब.मी. }=340 \text { बर्ग मीटर (उत्तर) }
$$

अभ्यास - 5(g)

1. नीचे दिएगए समलंब चतुर्भुजों का क्षेत्रफल ज्ञात करो, जिस समलंब चतुर्भुज में.
(i) समांतर भुजाएँ 35 मी. और 45 मी. है, ऊँचाई $=18$ मी. है ।
(ii) समांतर भुजाओं से भिन्र अन्य भुजा द्वय के मध्यबिंदु के संयोजक रेखाखंड की लंबाई

27 मी. हैं । समांतर भुजा युग्म के बीच की दूरी 16 मी. है ।
(iii) समांतर भुजा युग्म का योगफल 75 से.मी. है । समांतर चतुर्भुज की ऊँचाई 24 मी. है ।
2. एक समांतर चतुर्भुज का क्षेत्रफल 150 व.मी. है । ऊँचाई 5 मी है । इसकी समांतर भुजा युग्म की लंबाई का अंतर 6 मी है । प्रत्येक समांतर भुजा की लंबाई ज्ञात करो ।
3. एक समलंब चतुर्भुज का क्षेत्रफल 3840 वर्ग मीटर है । इसकी ऊँचार्त्र 48 मी. है। इसकी समांतर भुजा युग्म से भिन्न अन्य भुजा युग्म के मध्यबिंदु के संयोजक रेखाखंड की लंबाई ज्ञात करो ।
4. एक समलंब चतुर्भुज के समांतर भुजा युग्म की लंबाई क्रमश: 41 से.मी. और 57 से.मी. है । इसकी अन्य दो असमांतर भुजा युग्म में से एक समांतर भुजा युग्म के प्रति लंब है । अन्य भुजा की लंबाई 20 से.मी. है । इसका क्षेत्रफल ज्ञात करो ।
5. एक समलंब चतुर्भुज की समांतर भुजा युग्म की लंबाई क्रमश: 20 मी और 80 मीटर है । इसकी अन्य भुजा युग्म में से प्रत्येक की लंबाई 36 मी. है । इसका क्षेत्रफल ज्ञात करो ।
6. बगल की आवृति में ABCD एक आयत है । $\overline{\mathrm{EF}} \| \overline{\mathrm{BC}}, \overline{\mathrm{EK}} \perp \overline{\mathrm{BC}}, \mathrm{AD}=15$ मी. $\mathrm{EK}=7$ मी., $\mathrm{EF}=11$ मी और छायांकित भाग का क्षेत्रफल 89 व.मी. है । $\overline{\mathrm{AB}}$ की लंबाई ज्ञात करो ।

(आवृっति-5.34)
7. एक समलंबाकार मैदान का परिमाप 82 मी. है । इसकी समांतर भुजाओं से भित्र अन्य भुजा युग्म में से प्रत्येक की लंबार्स 20 मी. है । समलंब चतुर्भुज की ऊँचाई 7 मी है । समलंब चतुर्भुज का क्षेत्रफल ज्ञात करो ।

5.6 चतुर्भुज का क्षेत्रफल

सामान्य चतुर्भुज के क्षेत्रफल के लिए कोई स्वंतत्र सूत्र नहीं हैं । एक चतुर्भुज अपने विकर्ण के द्वारा जिन दो त्रिभुज में बँट जाता है, उन त्रिभुजों वे क्षेत्रफल का योग चतुर्भुज के क्षेत्रफल के बराबर होता है ।

बगल की आवृति में ABCD एक चतुर्भुज है । इसका एक विकर्ण $\overline{\mathrm{AC}}$ चतुर्भुज को $\triangle \mathrm{ABC}$ और $\triangle \mathrm{ADC}$ में बाँट
 देता है । दोनों त्रिभुजों के क्षेत्रफल का योग ABCD चतुर्भुज का ही क्षेत्रफल है ।
(A) एक विकर्ण की लंबाई और उस विकर्ण के प्रति उसके सम्मुख शीर्ष बिंदु युग्म से रचित लंब दिए गए हों तो चतुर्भुज का क्षेत्रफल ज्ञात करना:

ABCD चतुर्भुज में $\overline{\mathrm{BD}}$ विकर्ण के प्रति इसके सम्मुख शीर्ष बिंदु युग्म के A और C से क्रमशः
$\overline{\mathrm{AE}}$ और $\overline{\mathrm{CF}}$ लंब है ।
$\therefore \mathrm{ABCD}$ चतुर्भुज का क्षेत्रफल
$=\triangle \mathrm{ABD}$ क्षेत्रफल $+\triangle \mathrm{BCD}$ का क्षेत्रफल
$=\frac{1}{2} \times \mathrm{BD} \times \mathrm{AE}+\frac{1}{2} \times \mathrm{BD} \times \mathrm{CF}$
$=\frac{1}{2} \mathrm{BD}(\mathrm{AE}+\mathrm{CF})$
अर्थात्

चतुर्भुज का क्षेत्रफल $=\frac{1}{2} \times$ एक विकर्ण की लंबाई \times उस विकर्ण के सम्मुख शीर्ष बिंदु युग्म से उस विकर्ण के प्रति रचित लंब - युग्म का योग ।
(B) एक दूसरे के प्रति लंब होने वाले विकर्ण युग्म की लंबाई ज्ञात हो तो चतुर्भुज का क्षेत्रफल ज्ञात करना:

आकृति-5.37 में चतुर्भुज ABCD में विकर्ण $\overline{\mathrm{AC}}$ और $\overline{\mathrm{BD}}$ एक दूसरे के प्रति लंब हैं । दोनों का प्रतिच्छेद बिंदु ' O ' है । चतुर्भुज ABCD का क्षेत्रफल $=$ चतुर्भुज
$\triangle \mathrm{ABC}$ का क्षेत्रफल $+\triangle \mathrm{ADC}$ का क्षेत्रफल

$$
\begin{aligned}
& =\frac{1}{2} \times \mathrm{AC} \times \mathrm{BO}+\frac{1}{2} \times \mathrm{AC} \times \mathrm{DO} \\
& =\frac{1}{2} \mathrm{AC}(\mathrm{BO}+\mathrm{DO})=\frac{1}{2} \mathrm{AC} \times \mathrm{BD}
\end{aligned}
$$

(आकृति-5.37)

अर्थात्
विकर्ण युग्म एक दूसरे के प्रति लंब होने से चतुर्भुज का क्षेत्रफल $=\frac{1}{2} \times$ विकर्ण युग्म का गुणन फल है ।
(C) एक स्वतंत्र प्रकार के चतुर्भुज का क्षेत्रफल ज्ञात करना:

आकृति- 5.38 में दिए गए चतुर्भुज के $\overline{\mathrm{BD}}$ विकर्ण का कोई भी भाग चतुर्भुज के अन्त:भाग में नहों है। अतएव विकर्ण एक दूसरे को प्रतिच्छेद नहीं करते । आकृति से मालूम होता है कि ABCD चतुर्भुज का क्षेत्रफल $\triangle \mathrm{ABD}$ और $\triangle \mathrm{BCD}$ के क्षेत्रफल का अंतर है । A और C बिंदुओं से $\overline{\mathrm{BD}}$ के प्रति लंब क्रमश: $\overline{\mathrm{AE}}$ और $\overline{\mathrm{CF}}$ हैं । B

ABCD चतुर्भुज का क्षेत्रफल $=\triangle \mathrm{ABD}$ का क्षेत्रफल $-\triangle \mathrm{BCD}$ का क्षेत्रफल

$$
\begin{aligned}
& =\frac{1}{2} \times \mathrm{BD} \times \mathrm{AE}-\frac{1}{2} \times \mathrm{BD} \times \mathrm{CF} \\
& =\frac{1}{2} \times \mathrm{BD}(\mathrm{AE}-\mathrm{CF})
\end{aligned}
$$

अर्थात्, चतुर्भुज का क्षेत्रफल $=\frac{1}{2} \times$ बहिर्भाग के विकर्ण की लंबाई \times उस बिकर्ण पर उसके सम्मुख शीर्ष बिंदु युग्म से रचित लंब युग्म का अंतर

प्रश्नावली :

उदाहरण-1: एक चतुर्भुज का विकर्ण 12 मी. है । इस कर्ण पर बहिर्भाग वे शीर्ष बिंदुयुग्म से डाले गए लंब-युग्म क्रमशः 6 मी. और 7 मी. हैं। चतुर्भुज का क्षेत्रफल ज्ञात करो ।

हल : चतुर्भुज का क्षेत्रफल $=\frac{1}{2} \times$ विकर्ण \times लंब युग्म का योग

$$
=\frac{1}{2} \times 6(6+7) \text { व.मी. }=6 \times 13 \text { व.मी. }=78 \text { वर्ग मीटर (उत्तर) }
$$

उदाहरण-2: विकर्ण युग्म एक दूसरे को प्रतिच्छेद न करने बाले चतुर्भुज के बहिर्भाग वे विकर्ण की लंबाई 35 से.मी. है । उस विकर्ण पर सम्मुख शीर्षबिंदु युग्म से डाले गए लंब क्रमशः 18 से.मी. और 8 से.मी. है । चतुर्भुज का क्षेत्रफल ज्ञात करो ।

हल : चतुर्भुज का एक विकर्ण चतुर्भुज के बहिर्भाग में है तो चतुर्भुज का क्षेत्रफल $=\frac{1}{2} \times$ बहिर्भाग का विकर्ण \times इस पर डाले गए लंबयुग्म का अंतर

$$
=\frac{1}{2} \times 35 \times(18-8) \text { व. से.मी. }=\frac{1}{2} \times 35 \times 10 \text { व. से.मी. }=175 \text { व.से.मी. (उत्तर) }
$$

उदाहरण-3: एक चतुर्भुज का एक विकर्ण 75 से.मी. है । इसका क्षेत्रफल 900 वर्ग से.मी. है । इसके विकर्ण पर सम्मुख शीर्ष बिंदुओं से डाले गए लंबों में से एक दूसरे का तीन गुना है । दोनों लंबों की माप ज्ञात करो ।

हल : मान लो क्षुद्रतम लंब $=x$ से.मी.
\therefore वृहत्तर लंब $=3 x$ से.मी. होगा ।
दिया गया हैं विकर्ण $=75$ से.मी. ।
\therefore चतुर्भुज का क्षेत्रफल $=\frac{1}{2} \times$ विकर्ण \times उस विकर्ण पर डाले गए लंब युग्म का योग
$=\frac{1}{2} \times 75 \times(x+3 x)$ वर्ग. से.मी.
$=\frac{1}{2} \times 75 \times 4 x$ वर्ग से.मी. $=150 x$ वर्ग से.मी.
प्रश्न के अनुसार $150 x=900, \Rightarrow x=\frac{900}{150}=6$ से.मी.
\therefore एक लंब 6 से.मी. है ।
अन्य लंब $=6 \times 3$ से.मी. $=18$ से.मी. (उत्तर)

उदाहरण-4 :

ABCD चतुर्भुज में $\overline{\mathrm{AC}}$ विकर्ण $=17$ मी.
$\mathrm{AB}=21$ मी., $\mathrm{BC}=10$ मी. $\mathrm{CD}=26$ मी. और
 $\mathrm{DA}=25$ मी. हैं। चतुर्भुज का क्षेत्रफल ज्ञात करो ।

हल : $\triangle \mathrm{ABC}$ का अर्द्ध परिमाप $=\mathrm{s}=\frac{10+17+21}{2}$ मी. $=24$ मी.
$\triangle \mathrm{ABC}$ का क्षेत्रफल $=\sqrt{\mathrm{s}(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}$

$$
\begin{aligned}
& =\sqrt{(24(24-10)(24-17)(24-21)} \text { व.मी. } \\
& =\sqrt{24 \times 14 \times 7 \times 3} \text { व.मी. }=\sqrt{3 \times 4 \times 2 \times 2 \times 7 \times 7 \times 3} \text { व.मीटर } \\
& =(3 \times 2 \times 2 \times 7) \text { व.मी. }=84 \text { व. मीटर }
\end{aligned}
$$

$\Delta \mathrm{ACD}$ का क्षेत्रफल $=\mathrm{s}=\frac{17+25+26}{2}$ मी. $=34$ मीटर
$\Delta \mathrm{ACD}$ का क्षेत्रफल $=\sqrt{\mathrm{s}(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}=\sqrt{34(34-17)(34-25)(34-26)}$ व.मी.

$$
\begin{aligned}
& =\sqrt{34 \times 17 \times 9 \times 8} \text { व.मी. }=\sqrt{17 \times 2 \times 17 \times 3 \times 3 \times 2 \times 2 \times 2} \text { व.मी. } \\
& \quad=(17 \times 2 \times 3 \times 2) \text { व.मी. }=240 \text { व.मी. }
\end{aligned}
$$

\therefore चतुर्भुज का क्षेत्रफल $=\triangle \mathrm{ABC}$ का क्षेत्रफल $+\triangle \mathrm{ACD}$ का क्षेत्रफल

$$
=80+204=288 \text { व.मी. (उत्तर) }
$$

उदाहरण-5: एक चतुर्भुज के विकर्ण - युग्म क्रमशः 36 डेसी. मी. और 21 डेसी. मी. हैं। दोनों विकर्ण एक दूसरे को समकोणों में प्रतिच्छेद करते हैं। चतुर्भुज का क्षेत्रफल ज्ञात करो । हल: दोनों विकर्ण एक दूसरे को समकोणों में प्रतिच्छेद करते हैं ।
\therefore चतुर्भुज का क्षेत्रफल $=\frac{1}{2} \times$ पहला विकर्ण \times दूसरा विकर्ण

$$
=\frac{1}{2} \times 36 \times 21 \text { वर्ग से.मी. }=378 \text { वर्ग से.मी. (उत्तर) }
$$

अभ्यास - 5(h)

1. एक चतुर्भुज के एक विकर्ण की लंबाई 78 से.मी. है । इस विकर्ण पर इसवे सम्मुख शीर्षबिंदु युग्म से डाले गए लंब क्रमशः 23 से.मी. और 42 से.मी. हैं । चतुर्भुज का क्षेत्रफल ज्ञात करो ।
2. विकर्ण-युग्म परस्पर प्रतिच्छेदी न होने वाले चतुर्भुज वे बहिर्भाग का विकर्ण 43 से.मी. हैं। उस विकर्ण पर सम्मुख शीर्षबिंदु युग्म से ड़ाले गए लंब क्रमशः 19 से.मी. और 9 से.मी. हैं । चतुर्भुज का क्षेत्रफल ज्ञात करो ।
3. एक चतुर्भुज के विकर्ण युग्म एक दूसरे को समकोण प्रतिच्छेद करते हैं । दोनों कर्ण क्रमश: 40 डे.सी.मी. और 45 डे.सी.मी. है । चतुर्भुज का क्षेत्रफल ज्ञात करो ।
4. एक चतुर्भुज की विकर्णों का योग 50 मीटर है । उनका अन्तर्गत कोण समकोण है । एक विकर्ण दूसरे विकर्ण का चार गुना हैं। चतुर्भुज का क्षेत्रफल ज्ञात करो ।
5. एक चतुर्भुज की भुजाएँ क्रमशः 16 से.मी., 30 से.मी., 50 से.मी. और 52 से.मी. हैं । प्रथम दो भुजाओं का आसन्न कोण समकोण हैं। चतुर्भुज का क्षेत्रफल ज्ञात करो ।
6. एक चतुर्भुज का एक कोण समकोण है । समकोण की आसन्न भुजाएँ 12 मी. और 16 मी. हैं। चतुर्भुज के अन्य भुजाएँ प्रत्येक 26 मी. है । चतुर्भुज का क्षेत्रफल ज्ञात करो ।
7. ABCD चतुर्भुज की $\mathrm{AB}=75$ से.मी. है । $\mathrm{BC}=78$ से.मी. हैं । $\mathrm{CD}=63$ से.मी. है । DA $=30$ से.मी. है । और $\mathrm{AC}=51$ से.मी. है । चतुर्भुज का क्षेत्रफल ज्ञात करो ।
8. ABCD चतुर्भुज की $\mathrm{AB}=21$ से.मी., $\mathrm{BC}=16$ से.मी., $\mathrm{AD}=20$ से.मी. और $\mathrm{m} \angle \mathrm{BAD}=\mathrm{m} \angle \mathrm{CBD}=90^{\circ}$ हैं । चतुर्भुज का क्षेत्रफल ज्ञात करो ।
9. आकृति 5.40 में ABCD एक चतुर्भुज है । $\mathrm{BC}=\mathrm{CD}$ हैं । $\overline{\mathrm{BC}}$ और $\overline{\mathrm{CD}}$ की लंबाई तथा चतुर्भुज का क्षेत्रफल ज्ञात करो ।

(आवृति-5.40)

(आवृतति-5.41)

5.7 ठोस पदार्थ और इसका आकार (Solid and its shape)

पिछली कक्षा में तुम समतल पर रचित कुछछ आवृतियाँ जैसे त्रिभुज, आयत, समांतर चतुर्भुज, वृत्त आदि के संबध में जान चुवे हो । ये आकृतियाँ समतल पर रचित हो सकती हैं । इन्हें द्विविमीय 2-D (Two-Dimentional) आकृति कहते हैं । दूसरी ओर घन, घनाभ, प्रिज्म, बेलन (Cylender) शंकुत (Cone) और गोले आदि एक समतल पर सीमित नहीं रहते । अर्थात् इन्हें एक समतल पर रखने से इनका सिर्पं एक भाग समतल पर रहेगा शेष भाग समतल से बाहार रहेगा । इन वस्तुओं को त्रिविमीय वस्तु 3-D (Three-Dimentional) कहा जाता है । इनमें तीन विमाएँ (लंबाई, चौड़ाई, गहराई (ऊँचाई) होती हैं ।

परवर्ती अनुच्छेदों में हम वुछछ 3-D आकृति की वस्तुओं या ठोस वस्तुओं को एक समतल बनाना सीखेंगे । हम ठोस वस्तु समतल पृष्ठवाली के शीर्ष (Vertex) किनारे (Edge) और फलक (face) वे बारे में जानेंगे । ठोस वस्तु के शीर्षों, किनारों और पृष्ठों की सख्या को लेकर ऑयल्र सूत्र (Euler's Formula) की सत्यता कैวसे प्रतिपादित किया जा सवे गा, उसके बारे में जानेंगे ।
त्रि-विमीय वस्तुओं का वर्गीकरण
त्रि-विमीय ठोस: (a) बहु फलक (प्रत्येक पृष्ठ समतल है) । (b) बहु फलक नहीं हैं ।
बहुफलक: (a) प्रिज्म Prism (आधार और ऊपरी पृष्ठ सर्वांगसम क्षेत्र है ।
(b) पिरामिड़ (Pyramid) इसका आधार एक बहुभुज होता हैं इसके पार्श्व फलक एक शीर्षवाले त्रिभुज होते हैं।

5.8 बहुफलक (Polyhedron)

निम्न ठोस वस्तुओं की आवृतियों को ध्यान से देखो

घन

घनाभ

त्रिभुजाकार पिरामिड

चतुर्भुजाकार

भूमि वाला पिरामिड़
(आवृतति-5.42)
इन त्रि-विमीय घन वस्तुओं पर ध्यान देने से हम देखेंगे कि प्रत्येक वस्तु के वुлछ बहुभुजाकार पृष्ठ हैं, जिन्हें घन वस्तुओं का फलक या पार्श्व (Face) कहा जाता है । ये फलक किनारों (Edge) में मिलते हैं, जो रेखाखंड हैं । फिर दो या उनसे अधिक किनारे शीर्षों में मिलते हैं । ऐसे ठोसों को बहुफलक (Polyhedron) कहा जाता हैं।

नीचे के ठोसों की आकृतियों से पता चलता हैं कि ये समतल और वक्रतल पृष्ठवाले ठोस हैं ।
दूसरे शब्दों में कहा जा सकता है कि इन आवृतियों वाली ठोस वस्तुओं वे $\begin{gathered}\text { सभी फलक }\end{gathered}$ समतल पृष्ठ वाले नहीं हैं । इसलिए इन्हें बहुफलक (Polyhedron) नहीं कहा जा सकता ।

(आवृति-5.43)

यदि किसी बहुफलक के सभी फलक सर्वांगसम सम बहुभुजों से बने हों, तथा प्रत्येक शीर्ष पर मिलने वाले फलकों की संख्या समान हो तब उसे सम बहुफलक (Regular Polyhedron) कहते हैं।

उदाहरण स्वरूप घन और टेट्राहेड्रन (त्रिभुजाकार पिरामिड़, जिसका प्रत्येक फलक समवाहु त्रिभुज है) आदि एक एक सम बहुफलक हैं।

(a)

(b)

(c)

आवृति-5.44(a) और (b) में ठोस वस्तुओं के सभी फलक सम बहुभुज हैं, इसके बराबर संख्या के फलक मिलकर प्रत्येक शीर्ष बना है ।

आकृति-5.44(c) में ठोस वस्तु के सभी फलक सम बहुभुज हैं। लेकिन इसमें A शीर्ष तीन फलकों के मेल से बना है, जबकि B शीर्ष चार फलकों के मेल से बना है ।

5.8.2 बहुफलकों का प्रकार भेद

पहले के अनुच्छेद में जितनी ठोस वस्तुओं की चर्चा की गई थी, उनमें से कुछ समतल फलकवाली और वुछछ दोनों समतल और वक्रतल पृष्ठवाली होती हैं । हम इन ठोस वस्तुओं को दो भागों में बाँटते हैं। वे हैं (i) बहुफलक और (ii) बिना बहुफलक ।

जिन ठोस वस्तुओं के फलक एक एक बहुभुज है, वे बहुफलक कहलाते हैं । लेकिन जिन ठोस वस्तुओं के सभी फलक बहुभुजाकार नहीं होते वे बिना बहुफलक वाले कहलाते हैं ।

दूसरे शब्दो में कहा जा सकता है कि बिना फलक वाले ठोस वस्तुओं के सभी फलक समतल पृष्ठवाले नहीं हैं । उदाहरण के रूप में कोन (शंवुन), सिलिंडर (बेलन) और गोला है बहुफलक के आधार और फलकों के प्रकार भेद से उन्हें दो भागों में बाँटा जाता है । जैसे (1) प्रिज्म, (2) पिरामिड
(1) प्रिज्म: प्रिज्म एक बहुफलक है, जिसका आधार और ऊपर का दोनों फलक सर्वांगसम (सम क्षेत्रफल वाले) बहुभुज है । इसके अन्य फलक (पार्श्वफलक) समांतर चतुर्भुजवाले हैं। प्रिज्म

(a) त्रिभुजाकार प्रिज्म

(c) त्रिभुजाकार प्रिज्म

(d) घन प्रिज्म (घनाभ)

का आधार त्रिभुजाकार, पंचभुजाकार आदि हो सकता है । आधार के अनुसार प्रिज्म का नामकरण होता है ।
(2) पिरामिड (Pyramid): वह बहु फलक जिसका आधार एक बहुभुज होता है तथा इसके पार्श्व फलक (Lateral surfaces) एक शीर्ष (Vertex) वाले त्रिभुज होते हैं, पिरामिड कहलाता हैं ।

(a) त्रिभुजाकार पिरामिड

(b) चतुर्भुजाकार पिरामिड आकृति-5.45)

(c) पंचभुजाकार पिरामिड

याद रखो : एक प्रिज्म या एक पिरामिड़ का नामकरण इसके आधार के प्रकार के अनुसार होता है ।
वि.द्र.: 1. जिस त्रिभुजाकार पिरामिड के प्रत्येक पार्श्व फलक एक एक समवाहु त्रिभुज होता है, उसे टेट्राहेड्रन (Tetrahedron) कहते हैं।
2. जिस वर्गाकार प्रिज्म का प्रत्येक पार्श्व फलक एक एक वर्ग है उसे घन (Cube) कहते हैं ।

5.9 बहुफलक का शीर्ष, किनारा और फलक (Vertex, Faces and Edge of a polyhedron)

 प्रत्येक बहुफलक कुछछ बहुभुजाकार क्षेत्र द्वारा गठित होता है, जिन्हें बहुफलक के फलक (face) कहते हैं । फलकों के प्रतिच्छेद एक एक रेखाखंड किनारे (Edge) कहलाते हैं। दो से अधिक किनारों के प्रतिच्छेद से एक बिंदु की सृष्टि होती है, उसे बहुफलक का शीर्ष (vertex) कहते हैं ।अब हम एक त्रिभुजाकार पिरामिड और त्रिभुजाकार प्रिज्म के शीर्ष, फलक और किनारों की संख्या तय करेंगें ।

बहुफलक	शीर्ष संख्या (V)	फलक संख्या (F)	किनारों की संख्या (E)
त्रिभुजाकार पिरामिड	4	4	6

सारणी-5.2

5.9.1 ऑयलर सूत्र (Euler's Formula):

स्वीस गणितज्ञ लिओनार्ड ऑयलर (Leonard Euler, 1707-1783) एक बहुफलक के शीर्षों (V) फलकों (F) और किनारों (E) की संख्या को लेकर उनमें पाए जाने वाले संबंध सूत्र के रूप में उपस्थापित किया था । वह सूत्र है:- $\mathrm{V}+\mathrm{F}-\mathrm{E}=2$

नीचे की सारणी पर ध्यान दो । पहले वे अनुच्छेद में दिए गए बहुफलकों की आवृतियों से बहुफलक के शीर्षों, फलकों और किनारों की संख्या तय करवे सारणी में दी गई है। सारणी से तथ्यों को लेकर $\mathrm{V}+\mathrm{f}-\mathrm{E}=2$ सूत्र सत्यापित किया गया है ।

बहुफलक	शीर्षां संख्या(V)	फलकों संख्या (F)	किनारों की संख्या (E)	$\mathrm{V}+\mathrm{P}-\mathrm{E}$
टेट्राहेड्रन	4	4	6	2
धनाभ	8	6	12	2
पंचभुजाकार प्रिज्म	10	7	15	2
त्रिभुजाकार प्रिज्म	6	5	9	2
चतुर्भुजाकार पिरामिड	5	5	8	2

सारणी- 5.3
ऊपर की सारणी पर ध्यान देने से हम देखोंगें :-

याद रखो:

1: (a) एक प्रिज्म की शीर्ष संख्या इसके आधार की भुजाओं की संख्या की दुगुनी हैं ।
(b) एक पिरामिड की शीर्ष संख्या, इसके आधार की भुजाओं की संख्या से 1 अधिक हैं ।
2. (a) एक प्रिज्म की फलक-संख्या, इस के आधार की भुजाओं की संख्या से 2 अधिक हैं ।
(b) एक पिरामिड की फलक-संख्या, इसके आधार की भुजाओं की संख्या से 1 अधिक हैं ।

उदाहरण-1: निम्नलिखित बहुफलक में शीर्ष संख्या, फलक संख्या और किनारों की संख्या तय करके $\mathrm{V}+\mathrm{F}-\mathrm{E}=2$ सूत्र सत्यापित करो ।

हल :

(आवृति-5.47)

आवृति (i) में प्रदर्शित बहुफलक की शीर्ष संख्या $(v)=7$, फलक-संख्या (f) $=7$ और किनारों की संख्या $(\mathrm{E})=12, \quad \therefore \mathrm{~V}+\mathrm{F}-\mathrm{E}=7+7-12=2$

आवृति (ii) में प्रदर्शित बहुफलक की शीर्ष संख्या (v) $=12$
फलक संख्या (f) $=8$ और किनारों कि संख्या $(\mathrm{E})=18$
$\therefore \mathrm{V}+\mathrm{F}-\mathrm{E}=12+8-18=2$
वि.द्र.: समय समय पर बहुफलक की V, F और E की संख्या निरूपण करते समय बड़ी कठिनाई होती है । क्योंकि प्रत्येक बहुफलक की आवृति बनाना कठिन है, जैसे 10 भुजाओं वाले बहुभुजावाले पिरामिड, 12 भुजाओं वाले बहुभुजावाले प्रिज्म की आवृति बनाना कठिन व्यापार है । आवृति की रचना के बिना किसी भी प्रकार के बहुफलक की शीर्ष संख्या (V), फलक-संख्या (F) और किनारों की संख्या (E) का निर्धारण किया जा सवेगे । निम्न उदाहरण को ध्यान से देखो:-उदाहरण-2 : एक अष्टभुजाकार बहुभुज वाले पिरामिड़ की शीर्ष संख्या, फलक संख्या और किनारों की संख्या ज्ञात करो ।

हल : दिए गए बहुफलक की शीर्ष संख्या $(\mathrm{V})=$ बहुभुज की संख्या $+1=8+1=9$ फलक संख्या $=$ बहुभुज की भुजाओं की संख्या $+1=8+1=9$
किनारों की संख्या जानने के लिए $\mathrm{V}+\mathrm{F}-\mathrm{E}=2$ सूत्र की सहायता ली जाएगी ।
$\therefore 9+9-\mathrm{E}=2 \Rightarrow \mathrm{E}=18-2=16 \therefore$ बहुभुज की किनारों की संख्या $(\mathrm{E})=16$ होगी
खुद करो: निम्न आवृतियों को ध्यान से देखकर सारणी के शून्य स्थान भरो । (नीचे वुछ बहुफलकों की आवृतियाँ दी गई हैं।)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

बहुफलक (a)	E	V	F	$\mathrm{V}+\mathrm{F}-\mathrm{E}$
(b)				
(c)				
(d)				
(e)				
(f)				
(g)				
(h)				

सारणी- 5.4
[112]

सारणी - 5(i)

1. शून्य स्थान भरो :
(a) एक षड़ भुजाकार पिरामिड़ की पार्श्व संख्या \qquad है ।
(b) टेट्राहेड्रन की शीर्ष संख्या \qquad है ।
(c) आठ किनारों वाले पिरामिड़ की फलक-संख्या \qquad है ।
(d) एक चतुर्भुजाकार प्रिज्म की शीर्ष संख्या \qquad है
(e) एक पंचभुजाकार प्रिज्म की किनारों की संख्या \qquad है ।
(f) ' n ' भुजावाले बहु भुजाकार पिरामिड की फलक-संख्या \qquad है ।
(g) ' n ' भुजावाले बहु भुजाकार प्रिज्म की शीर्ष संख्या \qquad है ।
(h) एक बहुफलक वे किनारों की संख्या 12 है । फलकों की संख्या 6 है, शीर्षों की संख्या
\qquad है ।
(i) एक बहुफलक वे किनारों की संख्या 30 है, शीर्ष-संख्या 20 है, फलकों की संख्या \qquad है ।
(j) एक त्रिभुजाकार पिरामिड की शीर्ष-संख्या \qquad , फलक-संख्या \qquad है ।
2. एक बहुफलक की शीर्ष-संख्या और फलक-संख्या क्रमश: 7 और 10 है । इसके किनारों की संख्या कितनी होगी ?
3. एक बहुफलक के फलकों की संख्या और किनारों की संख्या क्रमश: 6 और 12 है । इसवे शीर्षों की संख्या कितनी होगी ?
4. एक वर्गाकार प्रिज्म और घन में क्या अंतर पाया जाता है, आकृति बनाकर दर्शाओ कि शीर्ष संख्या और फलक-संख्या का योग, किनारों की संख्या से 2 अधिक है ।
5. किसी बहुफलक का उदाहरण देकर दर्शाओ कि शीर्ष-संख्या और फलक-संख्या का योग, किनारों की संख्या से 2 अधिक है ।
6. ऑयलर (Euler) का सूत्र प्रयोग करवे निम्न सारणी के शून्य स्थान भरो :

फलक संख्या		5	20
शीर्ष संख्या	6		12
किनारों की संख्या	12	9	

(सारणी-5.5)
7. बगल की आकृति से इसके शीर्षों, किनारों और फलकों

(आवृっति-5.48) की संख्या ज्ञात करके ऑयलर के सूत्र का सत्यापन करो ।

5.10 ठोस वस्तु (बहुफलक) के पृष्ठीय क्षेत्रफल (Surface Area of a Polyhedron)

पिछले अनुच्छेद में हमें बहुफलक की अवधारणा मिली है । समतलीय फलक वाले बहुफलक से भी हम परिचित हो चुके हैं । घन और घनाभ आदि बहुफलकों के पृष्ठ समतलीय पृष्ठ हैं तो सिलिंडर और कोन आदि ठोस बस्तुओं (बिना बहु फलक वाले) का पृष्ठ वक्रतलवाले हैं ।

(आवृति-5.49)
घनाभ और घन की तरह त्रि-विभीय (Three-Dimentional या 3-D) वस्तुओं के सीमित फलकों या पार्श्वों को क्षेत्र कहते हैं और प्रत्येक पार्श्व का क्षेत्रफल होता है ।

चूँकि पार्श्व द्विविमिय (Two-Dimentional या 2-D) होता है, इसलिए पार्श्व का क्षेत्रफल ज्ञात करने के लिए किन्हों विमाओं (लंबाई और चौड़ाई) को जानना आवश्यक है ।

5.10.1 क्षेत्रफल की माप

(i) क्षेत्र को मापने के लिए पहला चरण है- (i) माप की इकाई का निर्धारण । जिस वर्ग की प्रत्येक भुजा की लंबाई एक इकाई है, उसका क्षेत्रफल एक वर्ग इकाई होगा। जैसे:- 1 से.मी. भुजावाले वर्ग का क्षेत्रफल 1 वर्ग से.मी. होगा। उसी प्रकार 1 मी. लंबी भुजा वाले वर्ग का क्षेत्रफल 1 वर्ग मीटर होगा ।
(ii) एक घनाभ में 1 इकाई के अंतर में इसकी भुजा से समांतर रेखा खींचकर इसे कई इकाइयों के वर्ग में विभाजित किया जाता है । इन छोटे छोटे वर्गों को गिनने से जो संख्या मिलती है वही आयत की लंबाई और चौड़ाई का गुणा करने से मिलती है । जैसे- 5 से.मी. लंबे और 4 से.मी. चौड़े आयत में 1 से.मी. की दूरी में इसकी भुजा से समांतर करके सरलरेखाएँ खींचने से ज्ञात होता है कि आयत, 20,1 से.मी. लंबी भुजा वाले वर्ग में विभाजित हुआ है । आकृति की भी लंबाई और चौड़ाई के गुणनफल से $5 \times 4=20$ मिला। इससे हमें ज्ञात हुआ कि आयत का क्षेत्रफल इसकी लंबाई और चौड़ाई का गुणनफल है ।

अर्थात् 20 वर्ग से.मी. $=5$ से.मी. $\times 4$ से.मी.
\therefore आयत की लंबाई और चौड़ाई क्रमशः l इकाई और b इकाई हों तो आयत का क्षेत्रफल
$=$ लंबाई \times चौड़ाई वर्ग इकाई

(आवृति-5.50)
$=l \mathrm{x} \mathrm{b}$ वर्ग इकाई l वर्ग की भुजा a इकाई होने से
वर्ग का क्षेत्रफल $=(\text { भुजा })^{2}$ वर्ग इकाई $=a^{2}$ वर्ग इकाई है ।
वि.द्र.: इस अनुच्छेद मे हम सिर्पन आयताकार और वर्गाकार प्रिज्म यानी घनाभ और घन के पृष्ठों पर चर्चा करेंगे ।

हम जानते हैं कि समघन का प्रत्येक पार्श्व (फलक) एक एक वर्ग है और घनाभ का प्रत्येक पार्श्व एक एक आयत है । क्योंकि घन और घनाभ क्रमशः वर्गाकार और आयताकार प्रिज्म हैं । ये प्रत्येक एक एक बहुफलक हैं ।

5.10.2 पृष्ठीय क्षेत्रफल (Surface Area):

एक आयताकार कमरे पर ध्यान दो । भीतर जाओ । यहाँ तुम कमरे में फर्श, छत के अलावा चार दीवारें देखोगे । हम चारों दीवारों को कमरे के पृष्ठतल कहेंगे । इनकी माप कों हम पार्श्व पृष्ठीय क्षेत्रफल कहते हैं ।

उसी प्रकार एक आयताकार बॉक्स के ढक्कन और उसके निचले हिस्से को छोड़कर हम बॉक्स के चार पार्श्व पृष्ठ देखेंगे । कमरे के चारों दीवारों को पोतने, भीतर की तरफ रंग देने का काम भी पड़ता है । उस समय हमें पार्श्व पृष्ठीय क्षेत्रफल जानना आवश्यक है । क्षेत्रफल ज्ञात होने से चूने या रंग का परिमाण, उसमें लगने वाले खर्च आदि का आकलन करना आसान होता है ।

आओ, अब हम घनाभ के पार्श्व पृष्ठीय क्षेत्रफल और इसके वुगल पृष्ठीय क्षेत्रफल का कैसे निर्धारण किया जाता है उसे समझेंगें ।

(i) घनाभाकार बाँक्स

(ii) बॉक्स के सभी पार्श्वों को खोलकर रखा गया है । (इसे बॉक्स का एक सांचा या नक्शा (net) कहते हैं ।
(आवृति-5.51)

वाँक्स के कुल छह पृष्ठ हैं । पृष्ठ (I) और (III) का क्षेत्रफल बराबर है । अन्य दो पृष्ठ (II) और (IV) का क्षेत्रफल बराबर है। आधार (V) और ढक्कन (VI) का क्षेत्रफल बराबर है।

इसका प्रत्येक पृष्ठ एक आयत है । इसलिए प्रत्येक पृष्ठ का क्षेत्रफल ज्ञात किया जा सकता है । घनाभाकार का वुल पृष्ठीय क्षेत्रफल (Whole surface area)
$=$ (i) का क्षेत्रफल + (ii) का क्षेत्रफल + (iii) का क्षेत्रफल + (iv) का क्षेत्रफल + (v) का क्षेत्रफल $+(\mathrm{vi})$ का क्षेत्रफल है ।

$$
\begin{aligned}
& =l \times \mathrm{h}+\mathrm{b} \times \mathrm{h}+l \times \mathrm{h}+\mathrm{b} \times \mathrm{h}+l \times \mathrm{b}+l \times \mathrm{b} \\
& =2(l \times \mathrm{h}+\mathrm{b} \times \mathrm{h}+l \times \mathrm{b}) \ldots \ldots(\mathrm{i})
\end{aligned}
$$

घनाभ के पार्श्व पृष्ठीय क्षेत्रफल (Lateral surface area)
$=\mathrm{I}$ का क्षेत्रफल + II का क्षेत्रफल + III का क्षेत्रफल + IV का क्षेत्रफल
$=l \times \mathrm{h}+\mathrm{b} \times \mathrm{h}+l \times \mathrm{h}+\mathrm{b} \times \mathrm{h}$
$=2 l \times \mathrm{h}+2 \mathrm{~b} \times \mathrm{h}=2 \mathrm{~h}(l+\mathrm{b})$
सूत्र: घनाभ का कुल पृष्ठीय क्षेत्रफल $=2$ (लंबाई \times ऊँचाई + चौड़ाई \times ऊँचाई + लंबाई \times चौड़ाई)
पार्श्व पृष्ठीय क्षेत्रफल $=2 \times$ ऊँचाई (लंबाई + चौड़ाई)
उदाहरण-3: एक डिब्बे की लंबाई, चौड़ाई और ऊँचाई क्रमश: 20 से.मी., 15 से.मी. और 10 से.मी. है । डिब्बे का वुल पृष्ठीय क्षेत्रफल ज्ञात करो ।

हल : यहाँ $l=20$ से.मी., $\mathrm{b}=15$ से.मी. और $\mathrm{h}=10$ से.मी. हैं ।
कुल पृष्ठीय क्षेत्रफल $=2(l \mathrm{~h}+\mathrm{bh}+l \mathrm{~b})$

$$
\begin{aligned}
& =2(20 \times 10+15 \times 10+20 \times 15) \\
& =2(200+150+300) \\
& =2 \times 650 \\
& =1300 \text { वर्ग से.मी. }
\end{aligned}
$$

तुम्हारे लिए गति-विधियाँ :

1. एक वर्ग कागज या ग्राफ कागज लाओ । जैसे दर्शाया गया है, उसी प्रकार वर्ग कागज पर आकृति बनाओ । कागज से उसे काटकर अलग करो ।

(आवृति-5.52)

(आवृति-5.53)
2. डट् चिह्नित रेखाखंड पर कागज को मोडकर एक बहुफलक बनाओ । गोंद से किनारों को जोड़ो। (आकृति 5.54 देखो)
3. कागज को मोड़कर गोंद से चिपकाने पर यह किस प्रकार की ठोस वस्तु में परिणत हुआ ?

(आवृति-5.54)
(यह एक की घनाकार वस्तु में परिणत हुआ ?)
4. दिए गए नक्से (net) से बने घन की पृष्ठ-संख्या और प्रत्येक पृष्ठ का क्षेत्रफल ज्ञात करो ।
5. घन की भुजा की लंबाई l इकाई है । इस के पार्श्व पृष्ठीय क्षेत्रफल और कुल पृष्ठीय क्षेत्रफल ज्ञात करो । (क्या हम कह सकते हैं कि इसके पार्श्व पृष्ठीय क्षेत्रफल $4 l^{2}$ और वुल पृष्ठीय क्षेत्रफल $6 l^{2}$ होगा ?)

उदाहरण-4: एक घन की एक भुजा की लंबाई 10 से.मी. है । उस घन के कुल पृष्ठीय क्षेत्रफल और पार्श्व पृष्ठीय क्षेत्रफल ज्ञात करो ।

हल : घन की भुजा की लंबाई $=l=10$ से.मी. है ।
\therefore कुल पृष्ठीय क्षषत्रफल $=6 l^{2}=6 \times(10)^{2}=600$ व.से.मी.
पार्श्व पृष्ठीय क्षेत्रफल $=4 l^{2}=4(10)^{2}=400$ व.से.मी.

खुद करो :

1. दो घन लो । इनकी भुजा b इकाई है ।

2. दोनों घनों को जोड़कर एक अन्य ठोस वस्तु बनाओ ।

(आकृति-5.55)
3. अब नई ठोस वस्तु के सभी पार्श्व पृष्ठों के क्षेत्रफल का योगफल ज्ञात करो ।
4. एक जैसे तीन घनों को जोड़कर जो ठोस वस्तु मिली उसका कुल पृष्ठीय क्षेत्रफल ज्ञात करो ।

(आवृति-5.56)

(आकृति-5.57)
[117]

अभ्यास-5(j)

1. बगल में एक घनाभ की आकृति दी गई है । इसवे दो अलग अलग नक्शे तैयार करो ।
2. प्रदर्शित घनाभ और घनों की आवृतियाँ देखो । दिए गए
 तथ्यों के आधार पर प्रत्येक का कुल पृष्ठीय क्षेत्रफल ज्ञात करो ।
(आवृति-5.58)

(आकृति-5.59)
3. एक घनाभ की लंबाई, चौड़ाई और ऊँचाई क्रमश: 15 से.मी., 12 से.मी. और 10 से.मी. हैं। इसके कुल पृष्ठीय क्षेत्रफल और पार्श्व पृष्ठीय क्षेत्रफल ज्ञात करो ।
4. एक घानाकार डिब्बे की लंबाई 2.5 से.मी. है । इसके वुलल पृष्ठीय क्षेत्रफल और पार्श्व पृष्ठीय क्षेत्रफल ज्ञात करो ।
5. तीन घनों को जोड़कर एक घनाभ बनाया गया । घन की प्रत्येक भुजा 30 से.मी. है । घनाभ का पृष्ठीय क्षेत्रफल ज्ञात करो ।
6. कार्ड बोर्ड से ऊपर खुला एक घनाकार डिब्बा बनाया गया । डिब्बे की लंबाई 18 से.मी. है । डिब्बे का वुगल पृष्ठीय क्षेत्रफल ज्ञात करो ।

7. बगल में दिए गए घनाभ को देखकर बताओ -

(i) घनाभ का वुलल पृष्ठीय क्षेत्रफल
$=$ पाश्व पृष्ठीय क्षेत्रफल $+2 \times$ आधार का क्षेत्रफल है ।
 क्या यह संभव है ?
(ii) दिए गए घनाभ में यदि हम आधार की ऊँचाई और ऊँचाई को आधार मान लेंगे तब क्या कुल पृष्ठीय क्षेत्रफल में कोई परिवर्तन होगा ?
(आवृति-5.60)

(आकृति-5.61)

5.11 ठोस वस्तु (बहुफलक) का आयतन (Volume of a polyhedron) :

रोज तुम किताब, ईंट, पत्थर के टुकडों, गेंद, लोहे की नली, रूलर और बॉक्स आदि वस्तुओं के संपर्व में आते होंगे । जिस वस्तु को समतलीय भू-पृष्ठ पर रखने से वस्तु का वुछ भाग भूपृष्ठ से सटकर रहता है और दूसरा भाग शून्य, वायु या जल में स्थान ले लेता है, ऐसी वस्तु को ठोसवस्तु कहते हैं। प्रत्येक ठोस वस्तु वायु, जल या शून्य में वुछछ स्थान घेर लेती है । इस अधिवृत स्थान की माप को ठोस वस्तु का आयतन कहते हैं ।

हम जानते हैं कि दो रेखाखंडों को उनकी लंबाई के माध्यम से, दो वर्गों या आयतों को उनके क्षेत्रफल के माध्यम से तुलना की जाती है । उसी प्रकार दो ठोस वस्तुओं के बीच तुलना सिर्फ उनके वायु में, जल में या शून्य में अधिकार करनेवाले स्थान अर्थात् उनके आयतन वे亏 माध्यम से किया जाता है ।

आयतन (Volume): किसी ठोस वस्तु द्वारा वायु, जल या शून्य में अधिकार किए गए स्थान की माप को उस वस्तु का आयतन कहते हैं । (Amount of space occupied by the solid is called volume).
5.11.1 आयतन की इकाई (Units of Volume)

हम जानते हैं कि एक क्षेत्र के क्षेत्रफल की माप को सूचित करने वे लिए जैसे वर्ग इकाई का व्यवहार किया जाता है, उसी प्रकार एक ठोस वस्तु का आयतन मापने के लिए घन इकाई का व्यवहार किया जाता है ।

एक क्षेत्र का क्षेत्रफल जानने के लिए हम उस क्षेत्र को । इकाई भुजावाले कुछ वर्गों में विभाजित करते हैं । उसी प्रकार किसी ठोस वस्तु का आयतन ज्ञात करने के लिए उसे हम 1 इकाई भुजा वाले घन में विभाजित करते हैं ।

1 घन से.मी. से हम समझते हैं कि यह 1 से.मी. भुजावाले एक घन द्वारा अधिकृत स्थान है । उसी प्रकार 1 घन मी कहने से हम समझते हैं कि यह 1 मीटर लंबी भुजावाले एक घन द्वारा अधिकृत स्थान है ।

आयतन का मात्रक (इकाई)

$$
\begin{array}{ll}
1000 \text { घन मीली. मीटर } & =1 \text { घन से.मी. } \\
1000 \text { घन से.मी. } & =1 \text { घन डेसी.मी. } \\
1000 \text { घन डेसी.मी. } & =1 \text { घन मीटर } \\
1000 \text { घन मी. } & =1 \text { घन डेका मीटर } \\
1000 \text { घन डेका मी. } & =1 \text { घन डेक्टो मीटर } \\
1000 \text { घन हेक्टो म. } & =1 \text { घन किलो.मीटर }
\end{array}
$$

वि.द्र.: हम यहाँ सिर्पन वर्ग या आयत आधार वाले प्रिज्म अर्थात् घन और घनाभ का आयतन ज्ञात करने के सूत्रों की चर्चा करेंगे ।

5.11.2 घनाभ और घन का आयतन (Volume of a Cuboid and a Cube)

1. घनाभ का आयतन:

बगल की आवृति को देखो ।
यह यह घनाभ की आवृति है । इसकी लंबाई, चौड़ाई और ऊँचाई क्रमश:

5 से.मी. 3 से.मी., और 4 से.मी. हैं ।
उस घनाभ को 1 से.मी. लंबाई वाले वुचछ घनों में बाँटा गया है ।

घनाभ कुल 60,1 से.मी. लंबाई वाले घन में परिणत हुआ है ।
हम जानते हैं कि 1 से.मी. लंबी भुजा वाले एक घन का आयतन 1 घन से.मी. है ।

\therefore दिए गए घनाभ का आयतन $=60$ घ.से.मी. है ।

$$
=5 \text { से.मी. } \times 4 \text { से.मी. } \times 3 \text { से.मी. }
$$

इससे स्पष्ट हुआ,
घनाभ का आयतन $=$ लंबाई \times चौड़ाई \times ऊँचाई या आधार का क्षेत्रफल \times ऊँचाई
तुम्हांरे लिए गति-विधियाँ : बराबर लंबाई वाले 36 घन लो । भिन्न भिन्न उपायों से इन घनों को सजाकर रखो । भिन्न-भित्न उपाय निम्न सारणी में दिए गए हैं ।

शून्यस्थान भरो :

	घनाभ	लंबाई	चौड़ाई	ऊँचाई	$l \times \mathrm{b} \times \mathrm{h}$
(i)	(ii)				1

सारणी - 5.6

इससे तुमने क्या समझा ?
चुँकि प्रत्येक घनाभ 36 घनों से बना है, इसलिए प्रत्येक घनाभ का आयतन 36 घन इकाई होगा । इससे स्पष्ट हुआ कि प्रत्येक क्षेत्र में घनाभ का आयतन $=$ लंबाई \times चौड़ाई \times ऊँचाई और घनाभ का आयतन $=$ आधार का क्षेत्रफल \times ऊँचाई

खुद करो: आवृति में दिए गए घनाभों का आयतन ज्ञात करो ।

8 से.मी.
(i)

(ii)
2. घन का आयतन :

घन एक घनाभ है जिसकी लंबाई, चौड़ाई और ऊँचाई बराबर हों ।
अथवा जिस घनाभ के सभी पृष्ठ बराबर क्षेत्र फलवाले एक एक वर्ग हों, वह घन कहलाता है ।

हम जानते हैं कि घनाभ का आयतन= लंबाई \times चौड़ाई \times ऊँचाई है ।
\therefore घन का आयतन $=l$ इकाई $\times l$ इकाई $\times l$ इकाई $\times=l^{3}$ घन इकाई

(आवृति-5.64)

खुद करो: ीीचे दिए गए घनों का आयतन ज्ञात करो ।
(a) घन की भुजा की लंबाई 4 से.मी. है ।
(b) घन की भुजा की लंबाई 1.5 मी. है।

तुम्हारे लिए गति-विधियाँ

(1) 64 समान आयतन (1 घन.से.मी.) वाले घन लो ।

(आवृति-5.65)
(2) 4 घनों को जोड़कर एक घनाभ तैयार करो । जिसकी माप 4 से.मी. $\times 4$ से.मी. $\times 1$ से.मी. हो ।
(3) इस प्रकार वे चार घनाभ एक दूसरे से सटाकर रखो । यह एक नया घनाभ बन गया । जिसकी माप 4 से.मी. $\times 4$ से.मी. $\times 1$ से.मी. है ।

(4) चरण 3 द्वारा बने ऐसे चार घनाभों को एक के ऊपर दूसरे को रखकर फिर से एक घनाभ बनाओ,

जिसकी माप 4 से.मी. $\times 4$ से.मी. $\times 4$ से.मी. होगी । यह घनाभ 64 घनों से बना है। इसलिए इसका आयतन 64 घ.से.मी. होगा ।

अर्थात् घनाभ का आयतन $=4$ से.मी. $\times 4$ से.मी. $\times 4$ से.मी.
$=$ लंबाई \times चौड़ाई \times ऊँचाई
यहँ घनाभ की लंबाई = चौड़ाई = ऊँचाई है।
अर्थात् यह घनाभ एक घन है ।
इसका आयतन (4) ${ }^{3}$ घ.से.मी. है ।

(आकृति-5.67)
\therefore घन का आयतन $=(\text { भुजा })^{3}$ घन से.मी. है ।
उदाहरण-5: एक पानी टंकी के भीतरी हिस्से की लंबाई, चौड़ाई और ऊँचाई क्रमशः 75 से.मी. है । चौड़ाई $=60$ से.मी. है । ऊँचाई= 46 से.मी. है । तब टंकी मे कितना घन से.मी. पानी आएगा, इसे लीटर में परिणत करो । (1000 घन से.मी. $=1$ लीटर)

हल: पानी टंकी के भीतरी हिस्से की लंबाई $=75$ से.मी. है । चौड़ाई $=60$ से.मी. है । ऊँचाई=46 से.मी. है ।

पानी का आयतन $=$ लंबाई \times चौड़ाई \times ऊँचाई

$$
\begin{aligned}
& =75 \times 60 \times 46 \text { घन से.मी. } \\
& =207000 \div 1000=207 \text { लीटर }
\end{aligned}
$$

उदाहरण-6: 15 से.मी. लंबी भुजा वाले कुछ घनाकार घातव पदार्थ 1.5 मी. $\times 90$ से.मी, $\times 75$ से.मी. माप वाले एक घनाभ बॉक्स में रखे जा सकेंगे ?

हल : घन का आयतन $=(15)^{3}=3375$ घन से.मी.
बॉक्स का आयतन $=1.5$ मी. $\times 90$ से.मी. $\times 75$ से.मा. $=1012500$ घन. से.मी.
\therefore आवश्यक घनों की संख्या $=\frac{1012500}{3375}=300$
\therefore अथवा आवश्यक घनों की संख्या $=\frac{150 \times 90 \times 75}{15 \times 15 \times 15}=300$

> अभ्यास-5(k)

1. 75 मीली. मीटर लंबी भुजावाला एक घन कितना घन से.मी. स्थान घेर लेगा ?
2. एक विद्यालय के प्रेक्षालय की माप 45 मी. $\times 20$ मी. $\times 16$ मी. है। यदि एक छात्र के लिए 64 घ.मी. वायु की आवश्यकता होगी, तब प्रेक्षालय सर्वाधिक कितने छात्रों के लिए पर्याप्त होगा ?
3. नीचे की आकृतियों में प्रदर्शित घनाभों और घनों की माप दी गई है । इन तथ्यों का उपयोग करके प्रत्येक का आयतन ज्ञात करो ।
(i)

(ii)

1.2 से. मी.

(आवृतति-5.68)
4. 12 से.मी. भुजा वाले एक धातव घन को पिघलाकर 18 से.मी. लंबा और 15 से.मी. चौड़ा एक घनाभ बनाया गया । घनाभ की ऊँचाई ज्ञात करो ।
5. एक घन का आयतन 8000 घन से.मी. है। इसकी भुजा की लंबाई ज्ञात करो ।
6. एक घनाभ की ऊँचाई ज्ञात करो जब इसके आधार का क्षेत्रफल 180 वर्ग से.मी. है आयतन 900 घन से.मी. है ।
7. एक घनाभाकार बॉक्स के भीतरी हिस्से की माप 60 से.मी. $\times 54$ से.मी. $\times 30$ से.मी. है । 6 से.मी. लंबी भुजावाले कितने घन उसमें आ सकेंगे ?

उत्तरमाला

अभ्यास-1(a)

1. (i) असंख्य (ii) दो (iii) एक (iv) एक $2 . \checkmark$ (ii), (iii), (vi), (vii) (\times) (i) (iv) (v)
2. (a) 6 (b) 4 4. A-C-B 5. 3 तीन जोड़ी

अभ्यास-1(b)

(i) (a) एक (b) शीर्ष (c) आसन (d) $\angle \mathrm{APQ}, \angle \mathrm{BPQ}$ (e) आसत्र (e) $\angle \mathrm{BOD}, \angle \mathrm{AOD} 2$. (a) 180° (b) 60 (c) 60 (d) 3.141 .5 (e) $(90-x)^{\circ}$, (f) $(180-x)^{\circ}$, (g) $(180-5)^{\circ} 3$. कोण, कोण का अन्त:भाग, कोण का बहिर्भाग 4.(a) 45° (b) 55° (c) 90° (d) $130^{\circ} 5$. (i) $\angle \mathrm{F}$ (ii). $\angle \mathrm{C}$ (iii) $\angle \mathrm{B}$ (iv) $\angle \mathrm{E}$
6. (i) 60°
(ii) 29
(iii) $39^{\circ} 78^{\circ} 78^{\circ} 9$
.(i) 36
(ii) $42 \quad 10.18$

अभ्यास-2

1. $\mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{k}$ सही हैं शेष गलत है । 2. (a), (b), (c), (d), (e) प्रत्येक उत्तर 3 है ।
2. $\mathrm{m} \angle \mathrm{A}=68^{\circ}, \mathrm{m} \angle \mathrm{CBD}=127^{\circ}, \mathrm{m} \angle \mathrm{C}=59^{\circ}, \mathrm{m} \angle \mathrm{ACE}=121^{\circ}, 5 . \mathrm{m} \angle \mathrm{C}=72^{\circ}$ समद्विवाहु त्रिभुज
3. $\mathrm{m} \angle \mathrm{C}=50^{\circ}, \mathrm{m} \angle \mathrm{B}=60^{\circ}, \mathrm{m} \angle \mathrm{A}=70^{\circ} 7$.(i) 90° (ii) 45° (iii) 60° (iv) 90° (v) $\mathrm{AB}=\mathrm{BC}$
4. 75°, $15^{\circ} 9$.(a) B (b) 132° (c) 70° (d) $158^{\circ} 10 . \mathrm{m} \angle 1=45^{\circ} \mathrm{m} \angle 2=45^{\circ} \mathrm{m} \angle 3=48^{\circ}$
5. $50^{\circ} 14.90^{\circ} 15$. (i) 65° (ii) 50° (iii) 70°; $16.40^{\circ}, 60^{\circ} 80^{\circ}, 17.58^{\circ}, 67^{\circ}, 55^{\circ}, 18$.
$90^{\circ}, 60^{\circ}, 30^{\circ} 20 . \mathrm{m} \angle \mathrm{A}=90^{\circ}, \mathrm{m} \angle \mathrm{B}=60^{\circ}, \mathrm{m} \angle \mathrm{C}=30^{\circ}$

अभ्यास-3(a)

1. (\checkmark) $a, \mathrm{e}, \mathrm{g}, \mathrm{h}, \mathrm{i}(\times): \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{f}, \mathrm{j}, 2 .(\mathrm{a})$ भुजाओं की लंबाई , (b$)$ चतुर्भुज (c) रम्बस (समचतुर्भुज) (d) भुजाओं की लंबाई (e) समलंब चतुर्भुज (f) समांतर चतुर्भुज (g) ऊँचाई (h) आयत, $3 .(\checkmark): \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{e}(\times) \mathrm{d}, \mathrm{f}, \mathrm{g}$

अभ्यास-3(b)

1. (a) समांतर चतुर्भुज (b) सम चतुर्भुज (c) वर्ग (d) आयत (e) समांतर चतुर्भुज (f) 180°, (g) 180°
2. $(\checkmark): \mathrm{a}, \mathrm{b}, \mathrm{d}, \mathrm{g}(\mathrm{b}) \mathrm{c}, \mathrm{e}, \mathrm{f}, 3 . \mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}(\mathrm{T})$ शेष (गलत) $4 . \mathrm{m} \angle \mathrm{B}=110^{\circ}, \mathrm{m} \angle \mathrm{B}=70^{\circ}$,
$\mathrm{m} \angle \mathrm{D}=110^{\circ}, 5.72^{\circ}, 108^{\circ}, 6.18^{\circ}, 54^{\circ}, 126^{\circ}, 7$. वरचित्र, $9.110^{\circ} 10 . \mathrm{m} \angle \mathrm{A}=\mathrm{m} \angle \mathrm{C}=110^{\circ}, \mathrm{m} \angle \mathrm{B}=$ $\mathrm{m} \angle \mathrm{D}=80^{\circ}, 11 . \mathrm{m} \angle 70^{\circ}, \mathrm{m} \angle \mathrm{MNB}=110^{\circ}, 12.45^{\circ}, 135^{\circ}, 45^{\circ} 135^{\circ}, 13 . \mathrm{m} \angle \mathrm{C}=\mathrm{m} \angle \mathrm{Q}=\mathrm{m} \angle \mathrm{T}=$ $\mathrm{m} \angle \mathrm{A}, \mathrm{m} \angle \mathrm{A}=\mathrm{m} \angle \mathrm{T}=\mathrm{m} \angle \mathrm{C}, \mathrm{m} \angle \mathrm{A}=\mathrm{M} \angle \mathrm{C}=110^{\circ} \mathrm{m} \angle \mathrm{B}=\mathrm{m} \angle \mathrm{D}=70^{\circ}, 14.2 .7$ इकाई, $15 . x=12$, $\mathrm{y}=5, x=13$

अभ्यास- 5(a)

1. 5 मी. ii. 13 से.मी., iii. 25 से.मी. iv. 17 मी., (v). 2.5 से.मी., (vi) 26 से.मी.
2. (i) 0.7 से.मी., (ii) 0.9 मी. (iii) 7.5 से.मी., (iv) 75 मी. (v) 115 मी. 4 (i) $\angle \mathrm{B}$, (ii) $\angle \mathrm{A}$ (iii) $\angle \mathrm{C}$, (iv) $\angle \mathrm{B}$, (v) $\mathrm{B}, 5.130$ मी., (ii) 16 मी. 7.6 मी. 8.5 .2 डेसी.मी. 9.4 मी., 10.68 से.मी.

अभ्यास- 5 (b)

1. (i) 12 से.मी. (ii) 80 से.मी., (iii) 25 से.मी., (iv) 13 से.मी., 2 . (i) $8 \sqrt{2}$ से.मी. (ii) $7 \sqrt{27}$ से.मी. (iii) $20 \sqrt{2}$ (iv) $\frac{25}{\sqrt{2}}$ से.मी. 3. (i) $7 \sqrt{2}$ से.मी. (ii) $9 \sqrt{2}$ से.मी. (3) 88 से.मी. (4) $2 \sqrt{2}$ से.मी. 4. (i) 85 मी. (2) 50 मी., 5. (i)
$4 \sqrt{3}$ से.मी., 6.90° से.मी. 7.48 से.मी., 8.50 से.मी., 196 से.मी., $9.4 \sqrt{2}$ मी. 10.20 से.मी. और $5 \sqrt{2}$ से.मी.

अभ्यास- 5(c)

1. 120 मी. 2.40 मी. 20 मी. 3. 22440 रुपए 4 .(1) 116 व.मी., 5.278 रुपए 40 पैसे,
2. 50, 6. (i) 0 , (ii) 4 व.मी., 7.482 व.मी., 8. 236 व.मी.

अभ्यास- 5(d)

1. 86.7 डेसी.मी. 2. 16560 व.मी., 3. (i) $98 \sqrt{3}$ व.से.मी. (ii) $96 \sqrt{3}$ व.से.मी. 4. (i) $48 \sqrt{3}$ व.डेसी.मी. (ii) $1296 \sqrt{3}$ व.मी. (iii) $\frac{x}{2} \sqrt{y^{2}}-\frac{x^{2}}{4}$ व.से.मी., $6.21 \frac{3}{7}$ से.मी., $7.6: 1,8.72000$ व.से.मी., 9 . 44 , 10. (i) 84 व.से.मी., (ii) 204 व.से.मी., (iii) 756 ब.मी. 11. 84 व.से.मी., 8 से.मी., 12. 64 व.से.मी., 13. 7.26 व.मी.
2. 28 से.मी., 15. $48 \sqrt{2}$ से.मी.

अभ्यास-5(e)

1. (i) 720 व.से.मी. (ii) 26520 व.से.मी., (iii) 48 व.मी. 2. 672 व.मी., 3.12096 व.से.मी., $4.31 \frac{3}{13}$ से.मी., 5. 16 से.मी., 6. 12 व.मी., 7. 27 मी.

अभ्यास-5(f)

1. (1) 160 व.से.मी. 2.154 व.मी., iii. 32 व.मी., 2.(1) 25 से.मी., (ii) 25 मी. (iii) 1.7 से.मी., (iv) 1.5 मी.
2. 40 मी., ii. 116 मी., 4.36 मी. और 108 मी. 5.36 से.मी., $6 . ~ 72 \sqrt{3}$ व.से.मी., $7.2 \sqrt{3}$ से.मी. $6 \sqrt{7}$ व.मी.

अभ्यास-5(g)

1. (1) 720 व.मी. 2. 432 व.मी. 3. 900 व.डे.मी. 2. (1) 27 मी. और 33 मी. (3) 80 मी. (4) 588 व.से.मी. (5) 1092 व.मी. 6.12 मी. 7.147 व.मी.

अभ्यास-5(h)

1. 2535 व.से.मी. 2.215 व.से.मी. 3.900 व.डे.मी. 4.200 व.मी. 5.1056 व.से.मी. 6.336 व.मी., $7: 2592$ व.से.मी.
2. 442 व.से.मी., $9.5 \frac{\sqrt{2}}{2}$ मी., 12. 25 व.मी., 10. 15.92 व.से.मी.

अभ्यास-5(i)

1.(a) 7 (b) 4
(c) 9 (d) 8
(e) $10 \mathrm{f}(\mathrm{n}+1)$,
(g) 2 n
(h) 8 (i) 12 (j) 4,4,6
2. 15,3 . $8,6.8,5,30$

अभ्यास-5(j)

2.(i) 822 व.से.मी., (ii) 384 व.से.मी., (iii) 5300 व.से.मी., (iv) 149.2 व.से.मी., (3) 900 व.से.मी., 540 व.से.मी., (4) 37.50 व.से.मी., 25 व.से.मी., (5) 12600 व.से.मी., (6) 1620 व.से.मी.

अभ्यास-5(k)

1.(i) 486 घ.से.मी. (ii) 1.728 घ.से.मी. (iii) 8000 घ.से.मी. 2.421 .88 घ.से.मी. 3.225 इकाई, 4.6 .4 से.मी. (5) 20 से.मी. (6) 5 से.मी. (7) 450

